Agenda

• Need for Repairs is a reality

• Airbus Methodology for Repairs

• Bolted and Bonded Repairs Calculation Methods
 ‣ Bolted Repairs
 ‣ Bonded Repairs

• Summary and Conclusions
Need For Repairs is a Reality

Airbus a/c structures state-of-the-art robust process:

• Design for durability
 ‣ Impact resistance via visual inspection.

• Design for repairability:
 ‣ Cosmetic repairs
 (Not addressed in this presentation.)
 ‣ Structural repairs:
 Depending on requirements:

Bolted patch:
 ‣ Flush
 ‣ Protruding

Bonded patch:
 ‣ Wet lay up
 ‣ Prepreg

Damage
(Not addressed in this presentation.)
Airbus Methodology for Repairs

- **Allowable damage**, when the damage does not affect the structural integrity nor decrease the function of the component.
 - These do not need structural repairs. In some cases, require cosmetic repairs.
- **Repairable damage**, when the damage exceeds the ‘allowable damage’ size, but is below the ‘Non-repairable’ damage size.
 - Damage leading to strength degradation below UL must be repaired.
- **Non-repairable damage**, when the replacement of the component is required, as the repair cannot be substantiated or due to feasibility (deformations, etc.).
 - For bonded repairs, the size limit is determined by damage size that can sustain LL without repair. For bolted repairs, it is constrained by feasibility and UL re-distribution assessment.
Upon event, Visual inspection for damage assessment

- Undetectable damage are covered by static and fatigue requirements, e.g., UL capability after application of repeated loading.
- Visually detectable damage (e.g., DET / GVI): NDT (US) inspection are required to assess the extent of delaminated area.

- The extent is compared with ADL/RDL published limits and actions are taken as per SRM.

Damage outside RDL

Damage report sent to OEM, and then forwarded to the relevant repair groups.
Airbus Methodology for Repairs

• ACJ25.603 §8.8: *Substantiation of Repair:* … it should be demonstrated by analysis and/or test, that methods and techniques of repair will restore the structure to an airworthy condition.

• Substantiation of repairs is done by analysis supported by tests:
 - The repair fulfils the same requirements as the parent structure.
 - Representative damage sizes are introduced in full scale test specimens to prove the maximum allowable damage size for each part of the structure. Full scale test specimen also includes representative repair solutions.
 - From coupons to elements, tests are dedicated to substantiate repair solutions (mats allowable/generic failure criteria, methods validation, special repair solutions).
 - Analysis is performed to demonstrate their structural capability (SRM justifications).

➤ Building Block Approach / Pyramid of tests:
Airbus Methodology for Repairs

• Building Block Approach / Pyramid of tests:

- Coupon/Qualification
- Stress allowable programme
- Details
- Sub-components
- Components - Full-scale

Non-Generic specimens

Generic specimens

- Final validation
 • Validation and exploitation on full scale or component tests

- Methodology & Computing validation
 • Validation against coupon and smaller specimen allowables
 • At detail level, ‘B’ values are determined.

- Definition of generic allowables set
 • Statistical treatment large and small populations ‘B’ values
 • In general 1 typical feature per specimen (hole, impact damage, lay-up..)
Airbus Methodology for Repairs

e.g., Composite Wing Box
Airbus Methodology for Repairs

Bolted Repair
Airbus Methodology for Repairs

- Example of a possible test sequence:

- Introduction of Manufacturing defects, BVID, AD & repairs
- Tested to UL at worst environmental condition
- Introduction of LVID
- Tested to LL at worst environmental condition

Fatigue phase

DT phase
Airbus Methodology for Repairs

- The objective of the Repair Calculation methods is to provide a robust mean of analysis for generic structural repairs.

Structural testing - From coupons to full-scale

Calculation methods - From coupons to full-scale
Bolted and Bonded Repairs Calculation Methods

- The objective of the repair calculation methods is to provide a robust mean of analysis for generic structural repairs.
 - Assumption about damage sites, and typical corresponding bolted repairs:
The objective of the repair calculation methods is to provide a robust mean of analysis for generic structural repairs.

- Assumption about damage sites, and typical corresponding bonded repairs:
 - (a) Rectangular repair patch
 - (b) Circular repair patch
Bolted and Bonded Repairs Calculation Methods

- Repairs calculation methods are a two-step process:

 1. Internal load transfer calculation,
 a. Quick sizing approach
 b. Advanced sizing approach
 2. Stress process.
Bolted and Bonded Repairs Calculation Methods

1. Internal load transfer calculation:
 a. Quick Sizing: 1D analytical approach
 – The calculation of the load transfer is done analytically,
 – Repair patch size effect may affect the internal load redistribution.
 b. Advanced sizing: 2D parametric FE approach
 – Fast and robust parametric-FE, transparent to the user.
 – Applicable to various repair types and representative of structural elements. Influence of stiffeners, repair patch geometry may be included,
 – Directly applicable to 2D stress fields.

Bolted Bonded
2. The stress process is done based on the calculated internal loads.
Bolted Repairs Internal Load Calculation

Quick Sizing

• The analysis is done on a fastener pitch. (The repair efficiency is taken into account.)

• A load transfer calculation is then done:

35% 30% 35%

The fasteners are analysed per fastener rows.
Bolted Repairs Internal Load Calculation
Advanced Sizing

- **Idealisation of Damage:**

 It is assumed that the damage is completely removed and is idealised as an elliptical or rectangular hole. (a circular damage is shown).

- **User Inputs, Design checks, parametric FE-Idealisation:**
 - The parent/repair are modeled with plate elements.
 - The fasteners are modeled with springs-like elements.
Bolted Repairs Stress Process

• In the most general sense, the stress process comprise the calculations of:

- Fastener strength
- Repair patches damage tolerance
- Buckling of the unsupported area
- Open-hole / Satellite-hole strength
- Filled Hole strength
• Filled holes calculations (bearing + bypass) are done and RF outputs. The approach considers bi-axial loadings. It is based on a stress concentration formulation and calibrated by tests on uni-axial and bi-axial coupons:

\[
\sigma_{by} = \frac{F_{by}}{W \cdot t} : \text{bypass stress} \quad \sigma_{b_{\text{by}}} = \frac{F_{b_{\text{by}}}}{d \cdot t} : \text{bearing stress} \quad \sigma_{\text{plain}} : \text{laminate plain strength}
\]

\[
k_{by} \text{ and } k_{b_{\text{by}}} : \text{stress concentration factors}
\]
- A 1D analytical approach, representative of a cross-section of a repaired panel,
- A 2D parametric FE approach.
Bonded Repairs Stress Process

• In the most general sense, the stress process comprise the calculations of:

- Adhesively bonded scarf repair
- Wet lay-up scarf repair
- Repair Patch Plain Strength Calculation
- Base Material Plain Strength Calculation
- Damaged Hole Calculation
- Adhesive Cohesive Strength Calculation (at each step)
- Damage Tolerance Calculation
Bonded Repairs Stress Process

Bond Strength Calculation

• Building block approach is used for static and fatigue validation.
• Strong experience built on good design practises to alleviate peel stresses (PDO, SRO, etc.).
• The cohesive bond strength calculation is based on:
 ‣ Bondline through-thickness averaged properties,
 ‣ Strength calibrated from tests with theoretical bondline thickness.
• The calculation is based on well controlled M&P parameters that are crucial for interfacial and cohesive bond properties.
• Linear and NL bond material properties are established:

 • The allowable are defined taking into account durability parameters:
Bonded Repairs Stress Process
Calculation Example
Bonded Repairs Stress Process

Bond Strain Calculation

Shear strain distribution in the adhesive

- 1D
- 2D

Position along the lap length (mm)

Bond shear strain

0 20 40 60 80 100
Bonded Repairs Stress Process

Current Developments

• Development of strength of materials approach, taking into account bond deformation and fracture and implementation of shear/peel iterative criteria.

• Development of fracture mechanics / damage mechanics approaches for the assessment of impact damages / delamination.

• Airbus understanding of regulatory requirements restricts introduction of bonded repairs on composite primary structures.

• Innovative NDI/SHM techniques are being looked at for introducing bonded repairs on PSE.
Bolted Repairs Summary

BOLTED REPAIR CALCULATION METHOD

MODEL GENERATION
- User Input
 - Base panel: geometry, materials
 - Repair panel: geometry, materials
 - Fastener location
 - Environmental conditions
 - Load
 - Etc.

EXTRACTION OF LOCAL LOAD DISTRIBUTION
- Plate flow
- Stiffener load
- Bearing load / By-pass flow at each fastener plate locations
- Stress distribution at d0=0 at different angles around the large damage hole

METHODS CALL-UP FOR THE CALCULATION OF RF
- Fastener structural integrity
- Open hole/ Satellite hole strength RF
- Bypass, Bearing loads distribution
- Bolted Joint Method
- Filled hole strength RF
- FE
- Stability Method
- Dam. Tol. Method
- Buckling RF
- Dam. Tol. RF

OUTPUT
- min. RF
Bonded Repairs Summary

Plain Strength Method

- Parent structure flows
- Repair patch flows
- Bond shear strains

Cohesive bond strength RF

- Parent and Repair patch flows
 - Plain Strength Method
 - Damage hole RF

Output

- min. RF
Bonded and Bolted Repairs Summary

- Airbus repair methodology ensures proper maintainability by considering repair philosophy at the design stage.

- Design for repairable structures:
 - Criteria for robustness - economical and structural:
 - ADL/RDL are defined taking into account service history,
 - Structures are inspectable and repairable using common techniques,
 - Standardised structural repairs (SRM):
 - Materials and allowable are based on controlled, qualified, materials and processes satisfying regulatory requirements and offering long-term reliable usage,
 - Design and calculation criteria are defined taking into account robustness and durability,
Thank you - Questions?