Evaluation of Friction Stir Welding Process and Properties for Aerospace Application: Standards and Specifications Development

Dwight Burford & Christian Widener
Advanced Joining & Processing
National Institute for Aviation Research (NIAR)
Wichita State University

Federal Aviation Administration
Joint Advanced Materials and Structures (JAMS) CoE
Technical Review Meeting
Hosted by CECAM at Wichita State University
July 21 – July 22, 2009

The Joint Advanced Materials and Structures Center of Excellence
Outline

• SAE Material Specs/Stdgs for FS Materials
 – SAE Committee Coordination
 – Material Specifications Roadmap Approach
 – Draft Roadmap
SAE Material Specs/Stdss

• SAE Committee Coordination
 – AMEC Meeting No. 203 (October 29, 2008)
 – AMEC Meeting No. 204 (January 29, 2009)
 – AMEC Meeting No. 205 (March 25, 2009)
 – SAE AMS Committee D Presentation (March 31, 2009)
• Committee Coordination
 – AMEC Meeting No. 203 (October 29, 2008)
 ▪ M. Niedzinski announced the FS spec/standards initiative and introduced D. Burford
 ▪ D. Burford provided overview (verbal)
 ▪ D. Burford was elected to committee
 ▪ Approval was granted to add formal presentation of proposal to agenda in next AMEC meeting
Committee Coordination (cont’d)

– AMEC Meeting No. 204 (January 29, 2009)
 ▪ Draft roadmap proposal presented & discussed
 ▪ Approval was granted to draft friction stir (FS) specs
 ▪ The committee chairman recommended that we use an aluminum forging spec as template for initial draft
 ▪ An update was scheduled for the next AMEC meeting
• Committee Coordination (cont’d)
 – AMEC Meeting No. 205 (March 25, 2009)
 ▪ A presentation of the refined draft roadmap was given & discussed
 ▪ Approval to draft a roster for an AMEC subcommittee was granted
 ▪ We were scheduled to provide update to SAE AMS Committee D Presentation the following week (March 31, 2009)
Committee Coordination (cont’d)

– SAE AMS Committee D Presentation (March 31, 2009)
 - D. Burford was introduced to the committee by AMEC committee chair, Al Patterson
 - D. Burford presented and discussed roadmap approach for FS material specs
 - The presentation added to committee minutes
Outline

• SAE Material Specs/Standards for FS Materials
 – SAE Committee Coordination
 – Material Specifications Roadmap Approach
 – Roadmap
Materials Produced by FS

- Friction Stirring (FS)*
 - Fine grain size (<15 µm)
 - Equiaxed grain shape
 - Presence of very fine second-phase particles to inhibit grain growth
 - Large fraction of high-angle grain boundaries

Fig. 14.3 (a) Friction stir processed 2024; (b) & (c) Comparison of as-rolled and as-FSPed microstructure

The Joint Advanced Materials and Structures Center of Excellence
Materials / Product Forms

- **FS Inserts in Castings**
 - Repair / healing of pores
 - Wrought material for fasteners
 - Improved edge retention of machined areas
 - Enhanced / modified corrosion response

![Diagram of FS Integral Insert](image1)

![Diagram of FS Integral Liner](image2)

The Joint Advanced Materials and Structures Center of Excellence
Unique Product Forms

- Forging End Grain Control
 - Manufacturing Assist
 - Removable tabs
 - Reduce complexity of forgings
 - Reduce end grain exposure
 - Termination operation
 - Modify microstructure

The Joint Advanced Materials and Structures Center of Excellence
Unique Product Forms

FS rod material (e.g. fastener fabrication)
- Fine, equiaxed microstructure
- Not producible by extruding, wire drawing, etc.

Boeing Patents US 6,843,404 & US 6,854,634
• Material Specifications Roadmap Approach
 – **Material properties / characterization**
 ▪ Grain morphology
 ▪ Mechanical properties (static, dynamic, etc.)
 ▪ Response to corrosive environments
 – Support joint property specs (etc.)
 ▪ Account for individual material segments
 ▪ Characterize combination of mechanical properties
The Joint Advanced Materials and Structures Center of Excellence
Joint Construction

Installed Fastener Joints

Insert fastener through mechanical drilling and compression

Integral Fasteners/Joints

Insert fastener through mechanical stirring

The Joint Advanced Materials and Structures Center of Excellence
Materials Produced by FS

Fig. 14.14 Illustration of the friction stir processing depth (6.3 mm, or 0.25 in.) and the ability to bend 2519-T87 Al ~85 ° at room temperature

The Joint Advanced Materials and Structures Center of Excellence
Fig. 14.25 Plane-strain bending in 50 mm (2 in.) thick 6061-T6 Al. (a) Parent metal bent to 27°, with cracks initiating on the tensile surface. (b) Friction stir processed 6061-T6 Al bent to 85° without cracking. Circle grid analysis of the surface strains showed that the negative minor strain at the crown was less than 1%.

Fig. 14.23 Spiral raster pattern in 50 mm (2 in.) thick friction stir processed 7050-T7451 Al bent 16° at room temperature

Fig. 14.24 Schematic illustration of the need for a preshaped blank to machine a monolithic structure, for example, when the necessary material thickness is not available

Materials Produced by FS

- Superplasticity
 - Selective superplastic forming
 - Superplastic forming of thick sheets
 - One-step processing for superplasticity from
 - Cast sheet or hot-pressed powder metallurgy sheet

Materials Produced by FS

Figure 4: Transmission electron micrograph of FSP D2 at 250 RPM and 4 in/min showing typical grain sizes of 500nm.

Figure 6: Photomacrograph of FSP D2 steel etched with 10% Nitric acid in methanol.

Figure 7: Measured microhardness data near the FSP zone.

Friction Stir Technologies

• A Family of Technologies
 – FS Additive Manufacturing
 – FS Composites
 – FS Forging
 – FS Processing
 – FS Repair
 – FS Spot Welding
 – FS Surface Modification
 – FS Tailored Blanks & Manufacturing Assist
 – FS Welding / Joining (… obtw, you can join with it!)

• FST Produce Wrought Microstructure
 – Sub-solidus metalworking operations
 – Promotes fine, equiaxed (recrystallized) grain structure
Multiple possible/practical processing paths exist for producing general shapes

Wrought Metal Grain Flow
- Forging
- Extrusion
- Friction Stir
- Hogout (machining) from Plate

Non-wrought grain structure
- Casting
- Recast welded zone

Transition Region
Outline

• SAE Material Specs/Stds for FS Materials
 – SAE Committee Coordination
 – Material Specifications Roadmap Approach
 – Roadmap
The Joint Advanced Materials and Structures Center of Excellence

Road Map Development

Friction Stir Technologies

Additive Manufacturing
- Locally built-up Structures
- Tailored Blanks

MMCs
- Tailored Surfacing Layer
- Selective Zones

Processing
- Grain Refinement
- Surface Modification
- “Forging”
- Selective Superplastic Zones
- Manufacturing Assist

Repair
- “Healing” Cracks
- Reinforcement
- Casting Porosity

Joining
- Continuous Joints
- Butt Joints
- Lap Joints
- Complex Joints
- Discrete Fasteners
The Joint Advanced Materials and Structures Center of Excellence

Road Map Development

Friction Stir Technologies

- pptn Strengthened Al Alloys
 - Air Frame Structure
 - High Strength Applications
- Non-pptn Strengthened Al Alloys
 - Marine Applications
 - Railcars
- Tool Steels (D2 example)
 - Blades Shears, etc.
 - Wear surfaces
- Al-Ni Bronze
 - Castings
 - etc.
- Ti
 - Tailored blanks
 - SFP

etc.
Road Map Development

Friction Stir Technologies

Process Spec (Library)
- Ref. where appropriate
- Develop where needed

Material Specs
- 2024-T3 Sheet
- 2198-T8 Sheet

The Joint Advanced Materials and Structures Center of Excellence
Path Independence Investigation
Variability Factors

The Joint Advanced Materials and Structures Center of Excellence
MMPDS Round Robin

Heat/Lot 1
 /
 /
Site 1 Site 2 Site 3 Site 4
 | | | |
Lockheed Alcan Airbus WSU
 |
 |
Panel 1 Panel 2 Panel 3 Panel 4
 | | | |
HH HL LH LL

5 specimens per panel per site.
Total = 120 specimens
The Joint Advanced Materials and Structures Center of Excellence

MMPDS Round Robin

Industry Standards
(AWS D17.3, ISO 25239)

Unique Material / Joint Property Specs Sets

- Round Robin
 - 2198 - 0.125” & 0.250”
 - 2024 - 0.125” & 0.250”
- FS Suppliers
 - Airbus
 - Alcan/Pechiney
 - Lockheed
 - NIAR

Airbus
Internal Specs & Certs

Alcan/Pechiney
Internal Specs & Certs

Lockheed
Internal Specs & Certs

NIAR
Internal Specs & Certs
Performance Specs & Standards

Situation
• A gap exists between industry specifications and supplier in-house specifications

Target
• Bridge the gap by establishing sets of material performance specifications for selected alloy families and gage ranges

Proposal
• Develop sets of performance/property specifications
 – Example: 2024-T3 sheet
 – Superimpose thermomechanical (TM) operation on prior TM history
 – Start with material that is governed by an AMS or other suitable standard material
The Joint Advanced Materials and Structures Center of Excellence

Performance Specs & Standards

Bridging the Gap

Industry Standards
 - AWS
 - ISO
 - SAE
 - ASTM
 - ...

Material / Joint Performance Specs (Sets)
 - Performance Requirements
 - Property Minimums
 - Acceptance Criteria
 - Deliverables

Supplier Internal Process Controls/Procedures
 - Command Media
 - Internal Process(es)
 - WPS
 - PQR 1
 - PQR 2
 - PQR ...

Intended to answer questions, such as:
What is a realistic (statistically-based) joint strength for a particular alloy & configuration?
Properties Specs & Standards

Industry Standards (AWS D17.3, ISO 25239)

Unique Material / Joint Property Specs Sets

- Property Specs & Stds Provide:
 - Realistic values
 - Target values
 - Minimum spec values
 - Certification values
- Added controls for aerospace
 - Common junction between different supplier specs & certs
 - Safety of flight through common quality controls (e.g. defects)
 - Source for handbook values (a “precursor” that demonstrates feasibility)

Supplier A
Internal Specs & Certs

Supplier B
Internal Specs & Certs

Supplier ...
Internal Specs & Certs
Properties Specs & Standards

Customer Requirements

- Process Performance Spec
 - Documentation
 - Objectives
 - Deliverables
 - etc.

Acceptance Criteria

Supplier Controls

- Process Procedure/Detail Spec
 - WPS (welding procedure specs)
 - PQR (procedure qualification record)
 - etc.

Foundation:

Industry Specs (AWS, ISO, etc.)
MMPDS* methodology/coordination

*Metallic Materials Properties Development & Standardization (formerly MIL-HDBK-5)

The Joint Advanced Materials and Structures Center of Excellence
The Joint Advanced Materials and Structures Center of Excellence

Timeline

Independent Supplier Specs

Industry-based Process Specs

Industry-based Material Property Specs

Handbook Design Data Minimums

Caveats:
1) Committee action
2) Funding
Summary & Conclusions

Existing

Supplier A
Internal Specs & Certs

Supplier B
Internal Specs & Certs

Supplier C
Internal Specs & Certs

Supplier … / …
Internal Specs & Certs

The Joint Advanced Materials and Structures Center of Excellence
Summary & Conclusions

Emerging

Industry Standards

- AWS D17.3
- ISO 25239
- ...

Existing

- Supplier A
 - Internal Specs & Certs
- Supplier B
 - Internal Specs & Certs
- Supplier C
 - Internal Specs & Certs
- Supplier ... / ...
 - Internal Specs & Certs
Summary & Conclusions

Emerging

Industry Standards

AWS D17.3

ISO 25239

...

Developing

Material / Joint Property Specs & Stds

Existing

Supplier A Internal Specs & Certs

Supplier B Internal Specs & Certs

Supplier C Internal Specs & Certs

Supplier … / … Internal Specs & Certs

The Joint Advanced Materials and Structures Center of Excellence
Summary & Conclusions

- Emerging Industry Standards
 - AWS D17.3
 - ISO 25239
 - ...

- Developing Material / Joint Property Specs & Stds
 - Supplier A Internal Specs & Certs
 - Supplier B Internal Specs & Certs
 - Supplier C Internal Specs & Certs
 - Supplier ... / ...

- Future Handbook Data
 - Established as FSPS database grows
 - Repository for design values

The Joint Advanced Materials and Structures Center of Excellence
Summary & Conclusions

“Design for Manufacturing” Analogy

Emerging
- Industry Standards
 - AWS D17.3
 - ISO 25239
 - ...

Developing
- Material / Joint Property Specs & Stds
 - Existing
 - Supplier A
 - Internal Specs & Certs
 - Supplier B
 - Internal Specs & Certs
 - Supplier C
 - Internal Specs & Certs
 - Supplier ... / ...
 - Internal Specs & Certs

Future
- Handbook Data
 - Established as FSPS database grows
 - Repository for design values

The Joint Advanced Materials and Structures Center of Excellence