Agenda

- What is GLARE®?
 - GLARE® characteristics.
 - GLARE® damage behaviour.
- Present repairs, riveted.
- Future repairs, bonded.
 - How to perform repair
 - Testing of repairs
- GLARE® repairs patches
- General developments
What is GLARE®?

- GLARE is a hybrid material built-up from alternating layers of aluminium and glass fibre reinforced metal adhesive.
GLARE® build up.

• GLARE® build-up:
 • Aluminium layer thickness: 0.2 - 0.3 - 0.4 - 0.5 mm
 • Fibre/adhesive layer build-up from multiple 0.125 mm UD layers
 • FM94 epoxy adhesive for structural metal bonding

• Standard grades:

<table>
<thead>
<tr>
<th>GLARE</th>
<th>Fibre/adhesive layer thickness</th>
<th>Fibre/adhesive layer build-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>0.25 mm</td>
<td>0°/0°</td>
</tr>
<tr>
<td>2B</td>
<td>0.25 mm</td>
<td>90°/90°</td>
</tr>
<tr>
<td>3</td>
<td>0.25 mm</td>
<td>0°/90°</td>
</tr>
<tr>
<td>4A</td>
<td>0.375 mm</td>
<td>0°/90°/0°</td>
</tr>
<tr>
<td>4B</td>
<td>0.375 mm</td>
<td>90°/0°/90°</td>
</tr>
<tr>
<td>5</td>
<td>0.5 mm</td>
<td>0°/90°/90°/0°</td>
</tr>
</tbody>
</table>

• Example: GLARE 4B-4/3-0.4

 0.4 mm thick aluminium layers
 4 aluminium layers, 3 fibre/adhesive layers
GLARE® characteristics.

• Static strength properties
 • Design values for GLARE® in 4/3-0.4 lay-up (MPa):

<table>
<thead>
<tr>
<th></th>
<th>2024-T3</th>
<th>GLARE 2</th>
<th>GLARE 3</th>
<th>GLARE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile ult. L</td>
<td>440</td>
<td>910</td>
<td>625</td>
<td>795</td>
</tr>
<tr>
<td>Tensile ult. LT</td>
<td>435</td>
<td>300</td>
<td>610</td>
<td>525</td>
</tr>
<tr>
<td>Tensile yield L</td>
<td>325</td>
<td>325</td>
<td>285</td>
<td>290</td>
</tr>
<tr>
<td>Tensile yield LT</td>
<td>290</td>
<td>215</td>
<td>260</td>
<td>230</td>
</tr>
<tr>
<td>Compr. yield L</td>
<td>270</td>
<td>305</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Compr. yield LT</td>
<td>310</td>
<td>230</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Bearing ult.</td>
<td>890</td>
<td>680</td>
<td>760</td>
<td>630</td>
</tr>
<tr>
<td>Blunt notch L*</td>
<td>410</td>
<td>600</td>
<td>425</td>
<td>510</td>
</tr>
<tr>
<td>Blunt notch LT*</td>
<td>400</td>
<td>190</td>
<td>415</td>
<td>360</td>
</tr>
<tr>
<td>E-modulus L</td>
<td>72400</td>
<td>66500</td>
<td>59500</td>
<td>59000</td>
</tr>
<tr>
<td>G-modulus</td>
<td>27600</td>
<td>20500</td>
<td>20500</td>
<td>18700</td>
</tr>
</tbody>
</table>

*:typical values
GLARE® characteristics. (cont’d)

- Mix of composite and metal properties/behaviour, GLARE® offers:
 - Static strength (tensile, compression, etc)
 - Damage Tolerance
 - Excellent Fatigue behaviour
 - Impact resistance
 - Residual strength
 - Corrosion resistance
 - Lightning strike resistance
 - Fire resistance
 - Easy workshop handling
 - Easy reparability

- Properties can be tailored:
 - Thicker or thinner aluminium layers
 - More or fewer fibre/adhesive layers
 - fibre adhesive layers at specific angles (e.g. ±45°)
GLARE® damage behaviour

- FOD causes a dent (impact) or a scratch, similar to aluminium
- Inspectability of FOD similar to aluminium
- Penetration energy higher than for aluminium and composites
- Debonding sizes resulting from impact are small compared to the dent size
- Effect of FOD on compression properties similar to aluminium
- GLARE exhibits slow fatigue crack growth and high residual strength in the presence of FOD
Present repairs, riveted.

• Repairability
 • The same repair methods can be applied as for aluminium
 • Superficial damage (corrosion, scratches) can be worked out
 • Riveted or bonded patches can be applied
 • Good fatigue and damage tolerance performance of repaired structure
Present repairs, riveted. (cont’d)

• Typical repairs
Future repairs, bonded.

• Advantages:
 • Fatigue insensitive
 • Corrosion
 • Lower design weight, reduced skin thickness
How to perform bonded repair

- Standard (SRM) procedures.
- No special tools or equipment.
- 1st aim hot bonded adhesive, later cold bonded

Cleaning of bonding surface Bonding film cut to shape Application of vacuum foil, thereafter start of curing with Heatcom® device, low vacuum pressure
Testing of bonded repairs

Megaliner barrel bonded repairs

- Two CA fatigue tests
- Three outdoor exposure + CA fatigue tests
Testing of bonded repairs (cont’d)

• The tests are still ongoing:
 • No problem to bond a repair (GLARE-)patch to GLARE®
 • Fine tuning of repair patch
 • Feasibility of standard GLARE patch.
 • Outdoor exposure program to be completed. Preliminary results (after 2 years outdoor exposure): no effect of outdoor exposure (Me/Me bonding is not affected)
GLARE® repairs patches

US Air Force/Lockheed Martin C-5A Galaxy: Bonded Patch Repairs

- Material: Two GLARE 2-3/2-0.2 repairs installed October 1995
- Design: Patch bonded over a fuselage longitudinal butt-joint with AF 163-2M
- Due to the poor fatigue performance of the aluminium 7079-T6 skin, significant fatigue damage did occur. When riveted aluminium patches were used, new cracks typically nucleate in the skin at the corners of the patches, leading to ever larger repairs.

- Status:
 - No skin crack extension
 - No debonding
 - No damage to GLARE patch
GLARE® repairs patches (cont’d)

• Status:
 • No skin crack extension
 • No debonding
 • No damage to GLARE patch
General developments

• Integrated systems, e.g.:
 • De-icing system leading edge nose skin
 – No bleed air required (energy decrease)
 – Full electrical aircraft (weight decrease)

• Friction stir welding to eliminate splices. (with 2024 GLARE)

• Improving GLARE properties (and Fibre Metal Laminates)
 • Higher static properties: to be achieved by higher strength alloys
 • Lower density due to lower density aluminium alloys (e.g. Al/Li)
 • Increase stiffness: to be achieved by higher stiffness fibres

• Automation of pretreatment (continue process), lay up and inspection (US).

• Larger Skin panels →
General developments (cont’d)

• Larger panels:
 • Easier Assembly
 • Less joints

Dimensions: 3.5 x 11 meters (10x33ft)
Crack Propagation is no Sizing Parameter

General differences of GLARE® compared with Aluminium:

- Fatigue life is longer
- Crack initiation is earlier
- Contribution of crack propagation period on total fatigue life is larger

![Graph showing fatigue cycles vs cycles to failure for GLARE® 3-3/2-0.3, 2024T3](image)

- N (initiation)
- N (crack growth)
GLARE® Design Features – “Giant” Tool Box

Splice in skin panel or doubler

- Limitation of aluminum sheet width
- Internal stress level in double curved panels

Additional glass fiber layers

- Embedded at frame locations

Inter-laminar doublers

- Spliced or go thru depending on length and orientation

Fiber Orientation and Lay-up

- Adjust properties to loading condition

Transition of GLARE® type

- E.g. from GLARE® 4 to GLARE® 3

Additional layers

- Aluminum sheet locally at frame station
- Glass fiber layers locally between two aluminum sheets

Airbus Customer Benefit from Fiber Metal Laminates - ESAS - Ref. L53PR0805135 - Issue 1

May 2006 Page 5
Fire resistance

- GLARE shows excellent fire resistance behaviour
 - fire wall tests: 15 minutes minimum at 1100°C
 - No flame penetration
 - Exposed aluminium layer melts
 - Epoxy around glass fibres carbonizes and protect remaining aluminium layers.
 - Backside temperature reduced by more than half due to isolating effect of delaminated glass fibre layers