Workshop Recap: Tuesday, September 15

- General agreement that the safety concerns expressed in presentations on regulatory perspectives are valid
 - Cert. efficiency for composite seats require more industry/regulatory interface
 - Workforce education is considered a priority need in transfer technology throughout the world of new products and the related field experiences

- Sandwich disbond initiative has industry interest.
 - Current funding organizations are committed to completing this effort
 - Additional industry support can help expedite the process
 - Moisture/fluid diffusion/ingression processes are of interest to technical community
 - Airbus bonded repair awareness campaign results would benefit future workshop

- Bonded repair (general agreement with ongoing initiatives)
 - Operator experiences indicate a need for a full range of damage considerations
 - “Combined airline voice” is best (+ more airlines/MRO needed at next workshop)
 - All OEM are pursuing additional applications for bonded repairs
 - Advances that consider field issues are showing promise
 - Must develop separate sandwich guidance that considers related special needs
 - Tech. transfer work is needed (due to proprietary limits & overall lack of industry standardization)
 - Repair substantiation guidelines & practical competency measures need more work
 - Case studies will be useful in illustrating differences in part criticality
Workshop Recap: Wednesday, September 16

- **HEWABI** means “To cut in pieces” “a” “wind”, polish translation: “to cut (or more politely, pass) wind”

- **HEWABI** progress to date is incomplete due to a need for further operations and maintenance interface (but there are other such initiatives active)
 - Further studies are needed to provide guidelines that minimize false calls
 - Too many potential Category 5 damage events to completely address through testing
 - Calibrated analysis for a particular structure can be used to help understand likely failure modes and establish conditional inspection instructions (strongly dependent on specific design detail)
 - Difficult to simulate HEWABI events that cause significant damage at subcomponent levels
 - Advanced NDE focused on reliably detecting the damage that justifies delayed or cancelled flight

- **Composite Fatigue and Damage Tolerance** has years of PSE experience
 - Damage threats/design criteria are linked to selected detection/inspection schemes
 - Composite structural behavior suggests efficiency from more reliance on subcomponent tests
 - Large damage capability helps avoid a more rigorous assessment of the effects of impact variables (e.g., impactor geometry & hardness) on damage detectability and residual strength
 - Time should be spent to evaluate the potential damage threat differences for small and large aircraft
 - Significant industry experience has been documented in CMH-17 but there are lots of future needs to meet the goals, which would provide a strong basis for the ongoing ARAC
 - Some emerging multi-LEF methods show promise for hybrid FSFT (deferred spectrum)
 - Composite/metal hybrid structure aging requires a need to allow adjustments based on field experience; however, fleet leader programs assume closer ties between OEM & airlines than exist
Workshop Recap: Thursday, September 17

- **Damage Tolerance (Special Subjects)**
 - Many different building block strategies exist but the common need exists to link structural analyses with test performance for parts representative of as-manufactured hardware
 - All OEM are pursuing more efficient procedures for “certification by analysis supported by tests”
 - Specific LEF for different structural details may best be addressed at subcomponent test levels; however, there is still a need to address the hybrid issues for the different elements in an assembly
 - ARAC should consider the future ability to address composite repeated load tolerance in a mix of subcomponent (with LEF) and full-scale fatigue (without LEF) testing
 - Thermal contribution to metal fatigue and hybrid structure static strength can be very significant
 - Full-scale test evidence is practically available in validating structural temperatures and thermal load levels (through tests performed with configured structure)
 - Some variations in material CTE suggests further study in documenting standard practices

- **Smarter testing**
 - Analysis developments linked with less tests, for purposes of covering specified design spaces
 - Ask Kevin to collect additional summary statements

- **Probability assessments**
 - Probabilistic assessments can supplement design criteria, identify/minimize testing, safety analyses
 - Some OEM have successfully applied probabilistic approaches to generalize damage threats for purposes of structural zoning and establishing maintenance inspection intervals
 - Moisture & temp. design criteria will likely be updated by probabilistic assessments in near term

- **Major Mods, Alterations and Repairs**
 - Good DER are constrained by existing practice and lack of specific standards/guidelines
 - Best practice my be similar to tech transfer for part mfg (first part qual, destructive inspection, etc.)
Workshop Support

• Thanks to Primary Organizers
 – Bombardier
 (Steven Zibreira, Magali Deschenes, Salamon Haravan)
 – Michelle Thomsen-Curwen, TTC Event Management
 – Diana Elting (Boeing)
 – Wichita State University (Tracee Freiss, John Tomblin)

• Thanks to Session Organizers
 – Regulatory Perspectives (Cindy Ashforth)
 – Bonded Repair (Mike Borgman, Rusty Jones, Lamia Salah)
 – HEWABI (Hyonny Kim, Lester Cheng)
 – Composite F&DT (D.M. Hoyt, Waruna Seneviratne)
 – Smarter Testing (Boeing)
 – Use of Probabilistic Methods (Airbus)