Externally Mounted Composite Radome / Fairings for Special Mission Applications

FAA Workshop on Modifications and Alterations affecting Composite Parts or Composite Structure

July 19-20, 2016

Gulfstream®
A GENERAL DYNAMICS COMPANY
Gulfstream Special Mission Experience

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>Year</th>
<th>FAA/FAA Approved</th>
<th>Tank / Fuel Capacity</th>
<th>Gulfstream G6</th>
<th>Medium Gulfstream</th>
<th>Douglas GP</th>
<th>Fixed-Wing Performance</th>
<th>Long-Range Range</th>
<th>Equipment/Rescue/Decor</th>
<th>Electronic/Nav</th>
<th>ECS/Avionics</th>
<th>ECS Airworthiness</th>
<th>Number of Aircraft</th>
<th>Aircraft Maintenance Support</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-4C Navy Trainer G1</td>
<td>38</td>
<td></td>
<td></td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
</tr>
<tr>
<td>NASA Shuttle Trainer GII</td>
<td>75</td>
<td>✓</td>
<td></td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
</tr>
<tr>
<td>G-4C</td>
<td>75</td>
<td>✓</td>
<td></td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
</tr>
<tr>
<td>Gulfstream G-805</td>
<td>75</td>
<td>✓</td>
<td></td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
</tr>
<tr>
<td>Danish Air Force GII</td>
<td>83</td>
<td>✓</td>
<td></td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
</tr>
<tr>
<td>C-20 USAF-Gulfstream G4Y</td>
<td>83+</td>
<td>✓</td>
<td></td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
</tr>
<tr>
<td>NASA Prop. Fan Testbed</td>
<td>34</td>
<td></td>
<td></td>
<td>Lockheed Martin</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>G-119 Red</td>
<td>88</td>
<td></td>
<td></td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
</tr>
<tr>
<td>Fleet Electronic Warfare-TEWSG</td>
<td>89</td>
<td></td>
<td></td>
<td>Chrysler Technologies/CTAS</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>Japanese Flight Checker</td>
<td>92</td>
<td>✓</td>
<td></td>
<td>Parker Hannifan/Gulfstream</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>Swedish; 5102B SIGINT G1</td>
<td>92</td>
<td></td>
<td></td>
<td>Gulfstream</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>C-20G-US Navy GIV</td>
<td>94</td>
<td></td>
<td></td>
<td>Gulfstream</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>NAA Airplanes/G-III</td>
<td>95</td>
<td>✓</td>
<td></td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
</tr>
<tr>
<td>NASA P-3B G6/SAR</td>
<td>97</td>
<td></td>
<td></td>
<td>Gulfstream</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>USN G-8/SC-3A</td>
<td>97</td>
<td>✓</td>
<td></td>
<td>Gulfstream</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>A4S / HALO II G-119</td>
<td>110</td>
<td></td>
<td></td>
<td>Avioniel</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>NSRDC Hanover, G-119</td>
<td>110</td>
<td>✓</td>
<td></td>
<td>Lockheed Martin/Aeromet</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>Japan Coast Guard - JCG GIV</td>
<td>110</td>
<td>✓</td>
<td></td>
<td>Fleetman Services</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>SSM G-119</td>
<td>110</td>
<td>✓</td>
<td></td>
<td>Lockheed Martin/ELTA</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
<tr>
<td>DLR/NOAH G150</td>
<td>110</td>
<td>✓</td>
<td></td>
<td>RUAG</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
<td>n</td>
<td>G</td>
</tr>
</tbody>
</table>
Gulfstream Special Mission Experience

GI

- TC-4C A-6 Trainer

GII/GIIB

- NASA Shuttle Trainer
- US Military Research Testbed
Gulfstream Special Mission Experience

• GIII
 – Foreign Military Cargo Door Installation

• GIV / G450
 – US Military Cargo Door Installation
 – Foreign Military Signal Intelligence
 – Gov VIP Transport
Gulfstream’s Experience - Special Missions

- GV / G550
 - Foreign Military Signal Intelligence
 - Foreign Military Tracking / Surveillance
 - Domestic / Foreign Atmospheric Research Platforms
 - Gov VIP Transport
Gulfstream’s Experience – Special Missions

Types of Special Mission Modifications / Installations

- Nose Radome
- Forward Fuselage Belly Radome (Canoe)
- Forward Fuselage Upper Fairings
- Forward Fuselage Side Fairings
- Aft Fuselage Lower Fairing
- Empennage Tip Cap Radome
- Tailcone / Ventral Fin
- Wing Stores
Gulfstream’s Experience – Special Missions

- Each Modification has its own unique design challenges
- All radome / fairing modifications require composite material of some type
 - Transmissivity
 - Weight
 - Stiffness
 - Complex Contours
Gulfstream’s Experience – Special Missions

• Most Challenging are Fuselage Belly Radomes or ‘Canoes’
 – Largest
 – Most Complex due to -
 • Mission / Customer Requirements
 • Aircraft Requirements
 • Regulatory Requirements
Radome Structural Design Criteria

• **Customer Driven Requirements**
 – Transmissivity
 – Field of View
 – Maintenance Access

• **Aircraft Driven Requirements**
 – Aerodynamic Loading
 • Flight Envelope / Mission Profile
 – Structural Loading
 • Airframe Deflection
 – Forced Deflection
Radome Structural Design Criteria

Selected Regulatory Requirements

• Design and Construction
 – 25.601 General
 – 25.603 Materials
 – 25.605 Fabrication Methods
 – 25.609 Protection of Structure
 – 25.613 Material Strength Properties and Material Design Values

• Structure
 – 25.301 Loads
 – 25.303 Factor of Safety
 – 25.305 Strength and Deformation
 – 25.307 Proof of Structure
Radome Structural Design Criteria

Selected Regulatory Requirements

Structure - Continued

• 25.365(e) Pressurized Compartment Loads
• 25.571 Damage Tolerance
 • Fatigue Assessment
 • Parts Departing Aircraft
 • Birdstrike – section 25.571(e)(1)
• 25.581 Direct Effects of Lightning
Radome Structural Design Criteria

Policy Statement

- PS-ACE100-2004-10030 Substantiation of Secondary Composite Structures
- PS-ANM-25-17 Structural Certification Criteria for Antennas, Radomes, and Other External Modifications

Advisory Material

- AC 20-107B Composite Aircraft Structure
Radome Structural Design Criteria

Company / Customer Criteria

• Structures not tested to ultimate loads should maintain min. M.S. = 0.25
 – If tested, min would be M.S. = 0.00
 – Ref. MIL-HDBK-516C

• Aero Pressure loads to have ultimate load factor of 2.0
 – May reduce to 1.5 based on previous tests

• Belly pod sizing based on external pressure loads and inertia loading
 – Inertia to include emergency landing and flight inertial
25.603 Material
25.613 Material Design Values

• Material
 – Typically fiberglass or quartz fiber
 • Required for transmissivity characteristics
 • Graphite/Epoxy for non transmission locations
Previous Programs

- Fiberglass material used throughout components
- Other radomes / fairings
- Material testing implemented to validate material data
 - Strength
 - Modulus
 - Strain Cutoffs
 - Critical Environmental Conditions
25.603 Material
25.613 Material Design Values

- Current / Future Programs
 - More sophisticated equipment requiring more advanced material
 - Testing programs developed to generate next generation of design values
 - Material Equivalency testing to existing material databases
 - Extensive use of NIAR facilities/capabilities
25.605 Fabrication

Radome / Canoe Fabrication

• Panels / Shell
 – Solid Laminate or Honeycomb Sandwich
 – Mission Dependent

• Fabrication Processes
 – Well Understood
 • Neither new nor novel
 – In house fabrication process specifications
 – Previously approved
Both classical analysis and FEM are employed.

Laminates are analyzed by typical laminate sizing routines
- Strain cutoffs
- Buckling criteria

FEM Model validation
- Unit loading / classical solutions
- Constraints Checks
- Deflection Checks
- Boundary Conditions
– Maintain minimum M.S. for untested structure
 • Customer/company requirement

– Testing performed to validate analysis and analytical details
 • Fuselage Proof Pressure
 • Attachment fittings
• Belly pods are not pressurized but are attached to pressurized fuselage
• Requirement per 25.365(e) requires any structure outside a pressurized compartment to be able to withstand the sudden release of pressure from fuselage
• Belly pods designs incorporate means of venting the radome in a fuselage decompression event.
25.571 Damage Tolerance

• **Fatigue Assessment**
 – Influence of Canoe / Belly Pod Radome on aircraft fatigue life is addressed
 – Affected sections of airframe are reviewed and updated if required

• **Parts Departing Aircraft**
 – Fuselage Canoe / Belly pod radomes
 • All designs have multiple attachments at frame locations
 • Design incorporates ability to lose connections
 • ‘Get Home’ loading
25.571 Damage Tolerance

• Inspections are established
 – Radome laminate
 – Fittings attaching radome to fuselage
 – Impact damage of composite shell
25.571(e) - Birdstrike

Previous Programs

• Birdstrike testing performed

• Bird will penetrate radome
 – Bird disintegrates on impact
 • Composite fiber toughness shreds the bird
 – No parts separated from test article

• Assessment of penetration
 – Ram air effect due to hole
 – Full aerodynamic pressurization
 – Multiple fitting design
25.581 – Direct Effects of Lightning

- Belly Pod Radomes are generally located in primary strike zone locations

- Segmented diverters are typically utilized
 - Leading edges/extremities
 - Mesh in acreage not in FOV

- Testing
 - High voltage determines attachment location
 - High current validates protection strategy
Summary

• Composite Belly Pod / Canoe Radome designs have been in service on Gulfstream aircraft for over 25 years

• Fiberglass / Graphite Composite material utilized throughout all designs

• Successful Implementation based on
 – Conservative design criteria
 – Sound material selection
 – Proven fabrication methods
 – Reliable structural analysis techniques
 – Systematic inspection
Questions?