Sept 2015: FAA/Bombardier Composite Transport DT & Maintenance Workshop

CMH-17 Honeycomb Sandwich Disbond Growth Team Status Mid 2015
Content

Introduction
Airbus experience
CMH-17 Working Group
 Road Map for Research
 Linked Research
Key Message
Introduction

Subject
Damage growth in unvented honeycomb sandwich structures due to Ground-Air-Ground (GAG) pressurization and in-plane loading

• **Airbus** shared experience at F&DT Workshops in Amsterdam, Tokyo & CMH-17 Meetings

• Degradation due to disbonding affects operational safety

• Methods for assessing propensity of sandwich structures to disbonding not fully matured, accepted and documented

• In 2011 Larry Ilcewicz, FAA, initiated the Honeycomb Sandwich Disbond Growth Team as part of the CMH-17 organization

→ Recap of Airbus Experience & CMH-17 Honeycomb Sandwich Disbond Growth Team Activities, Road Map & current status
Introduction

Honeycomb Sandwich Disbond Growth due to GAG-Cycle Pressurization & in-plane loading

Assumption:
- Air volume enclosed in the structure
- Tight unvented structure

Flight Altitude

Ground Level

To1 & Po1

= ≠

Ti1 & Pi1

To2 & Po2

Ti2 & Pi2
Introduction

Honeycomb Sandwich Disbond Growth due to GAG-Cycle Pressurization & in-plane loading

GAG-Cycle pressurization In-plane loading

Effect on disbond propagation & structural integrity
Introduction

Airbus Vacuum Chamber GAG-Cycle Fatigue Tests

Tests in 2005 showed damage propagation & residual life capability
Airbus Experience

Sandwich Rudder Design

March 2005
Sandwich rudder in service experience

Airbus Circle of knowledge for sandwich disbond

NDI inspection methods & capabilities

GAG-cycle analysis

Disbond analysis on component level

GAG-cycle testing

Coupon Test Fracture Toughness
Airbus Experience

• Airbus shared the In-Service experience during Workshops

• Disbond growth due to GAG-Cycle pressurization & in-plane loading can affect operational safety

• Airbus expectations
 • International standard for honeycomb core fracture toughness testing → ASTM
 • Honeycomb core fracture mechanics approach

• Matured & international accepted assessment of the phenomenon will help to keep honeycomb sandwich structures in business
CMH-17 – Honeycomb Sandwich Disbond Growth Team

CMH-17 Honeycomb Sandwich Disbond Growth Task Group

- International working group under the CMH-17 organisation
- Initiated by Larry Ilcewicz in 2011 & supported by Simon Waite EASA
- Chair: Ronald Krüger NIA, Hampton

- The Task Group activity is considered in the FAA AVS Composite Plan under Continued Operational Safety (COS) as high priority
CMH-17 – Honeycomb Sandwich Disbond Growth Team

Group Objective

Develop matured, accepted & documented methods for assessing propensity of sandwich structures to disbond growth under GAG-Cycle pressurization and in-plane loading

Active partners (September 2015)
CMH-17 Sandwich Disbond Growth Team Road Map

Road Map for Research (Status 2015)

Task 1: Coupon Test Standard Development
Task 2: Analysis Development
Task 3: Panel testing for analysis validation
Task 4: Sandwich Disbond Substantiation and Methodology Development
Task 5: Documentation of findings in CMH-17 Vol. 6

Data shown on the slides are provided & released by the individual partners
CMH-17 Sandwich Disbond Growth Team Road Map

Background

- Examples from Space, Marine & Aviation collected & discussed
- Occurrence of in-service component failures associated with disbonding in honeycomb core sandwich
- Structure integrity degradation due to disbonding affects continued operational safety
CMH-17 Group - Funding

• European Funding
 • Airbus is funding a PhD at DTU – active since July 2015 (3 years)
 • DTU has another PhD working on the subject
 • EASA project proposal by Airbus, Airbus Helicopters, DTU, IWM, DuPont → EASA R&T final position pending → Project still expected for 2016

• US Funding
 • Zhi Chen has accepted a position at the FAA Tech Center in Atlantic City (start date was June 29)
 • NASA James Ratcliffe & Utah, Dan Adams – ASTM SCB Test Standard
 • NIAR, Waruna, FAA & KART funding
 • FAA funding likely to be available to support research
 • Discussion basis is the Road Map
Task 1: Coupon Test Standard Development

• Develop standard test methods for characterizing facesheet/core disbonding in sandwich components
• Covering static, damage tolerance (fatigue, damage growth) and environmental aspects (e.g. temperature knock down)

SCB Test

• SCB draft standard for mode I fracture toughness testing
• Collaboration with ASTM committee D30.09 (WK 47682)
Task 1: Coupon Test Standard Development

ASTM SCB (WK 47682)
- James Ratcliffe NASA Hampton & Dan Adams University of Utah

Specimen geometry
- Length
- Width
- Initial crack length

Facesheet properties
- Thickness
- Flexural stiffness
- Flexural strength

Core properties
- Thickness
- Density
- Stiffness
- Strength

Mode mixity
- Variations across specimen width
- Variations with crack length

Data reduction methods
- Thru-thickness crack placement
- Anticlastic curvature & curved crack front

Large rotations of facesheet
- Use of facesheet doublers

Facesheet curvature effects
Task 1: Coupon Test Standard Development

SCB Round Robin Test
NIAR is providing SCB specimen

- **Materials**
 - Facesheet
 - Cytec 5320-T650-3K plain weave
 - Core
 - Hexcel HexWeb HRH-10
 - 0.125” cell size
 - 0.5” thickness
 - 3.0 pcf density
 - Adhesive
 - FM300-2

SCB Round Robin Test
(7 Labs)
- NASA
- Utah
- NIAR
- DuPont
- DTU *)
- IWM
- Airbus

*) SCB & DCB-UBM
Task 1: Coupon Test Standard Development

NIAR - Activities

• Large Test matrix
• Environmental tests (temperature, fluid)
• Results released in two FAA Reports
Task 1: Coupon Test Standard Development

IWM Activities
Test Rig & Test Procedure Improvement

Enhancements:
- Robust clamping jaws
- In plane view via mirror
- Enhanced illumination
- Automated crack tip recognition (ongoing)

Standard:
- Specimen adhesively bonded on a rigid fixture
- Visual crack length measurement
- Experimental and numerical case studies
Task 1: Coupon Test Standard Development

DuPont Activities

• As DuPont is the supplier of the honeycomb core Aramid paper to understand its role within the fracture toughness measurement

• Objective to develop out of the ASTM procedure an industry applicable coupon test workbench

• Automatic data acquisition & Optical Extensometer (marker & pixel tracking)
Task 1: Coupon Test Standard Development

Mixed-mode screening of honeycomb sandwich specimens (pilots) : DCB-UBM

- G-controlled testing (static & fatigue)
- Control of mode-mixity and energy release rate
- Analytical J-integral expressions derived used to obtain energy release rate
Task 1: Coupon Test Standard Development

G-controlled Static and Fatigue MMB Tests

- Constant crack growth rate
- More accurate material characterization compared to load or displacement controlled tests
- Possibility of using the same specimen for several tests

Crack Speed \((\frac{da}{dN}) \) vs Cyclic Energy Release Rate \((\Delta G) \) for fatigue tests

\[
\frac{da}{dN} = 9 \times 10^{-15} x^{4.56}
\]
Task 1: Coupon Test Standard Development

Airbus Activities

- Supports from OEM coupon test in-field experience to achieve a test procedure which is industry applicable
- Comparison and refinement of different Data Reduction methods in order to
 - Identify the most robust and correct data reduction method
 - Simplify the test method (avoid crack length observation, simple data reduction)
Task 1: Coupon Test Standard Development

Open items

• Detailed discussion about the test procedure in monthly WebEx meetings
• Round Robin Test Program (7 Labs)
 • SCB & DCB-UBM specimen manufactured
 • Detailed discussion about the test procedure
 • Testing → soon

Achievements (status September 2015)

• November 2014 Hampton US SCB Testing Workshop
• SCB draft standard for mode I fracture toughness testing
• Collaboration with ASTM committee D30.09 (WK 47682)
CMH-17 Sandwich Disbond Growth Team Road Map

Task 2: Analysis Development

• Develop a fracture mechanics based methodology to assess facesheet/core disbonding in sandwich components

• Develop models and analysis tools for facesheet/core disbonding in sandwich components subjected to ground-air-ground cycles and/or in-plane loading

• Goal is to develop a model & analysis tools which can be implemented in component structure finite element models and not only on sub-scale models
Task 2: Analysis Development

Parametric ABAQUS Models for Flat & Curved Sandwich Panel was created

• Based on guidance from Airbus, Martin Rinker (IWM) developed a finite element model during his stay at NASA/NIA in 2012
• Goal was to simulate and study the GAG cycle using a 3D solid model in Abaqus/Standard
• Model includes pressure-deformation coupling following the ideal gas law
• Crack Front assessed using VCCT
Task 2: Analysis Development

ABAQUS model evolution
Zhi Chen at NASA (2014) and now at the FAA Tech Center extended the model to include in-plane loading and also simulated curved panels.

ABAQUS model evolution

Energy release rate along disbond front
Task 2: Analysis Development

Honeycomb Core In-plane moduli

- Subject: Discussion of the large in-plane stiffness change at the honeycomb core to face sheet interface (crack location)
- Fracture mechanics analysis by VCCT and CSDE showed
- In-plane elastic properties using *Gibson-Ashby* relations – CSDE implementation provide more realistic results
- Group discussion on subject necessary
Task 2: Analysis Development

Flat Panel Disbond Study under mainly in-plane loads

- Gain experience how the model is working
- Fracture mechanics and buckling/postbuckling sensitivity analysis

Calculated ERR, Plane Honeycomb Core Sandwich Panel

Debonded Area:
A = 5027 mm²
(d = 80 mm)

Boundary Conditions:
Gₜₐ₉ = 0.1013 MPa, Tₑ = 15°C (ground, ambient)
Gₜₐ₉ = 0.0898 MPa, Tₑ = 9.5°C (at 1,000 ft)
Task 2: Analysis Development

Coupon Test & Panel Analysis

- Study damage growth under in-plane loading (more relevant for Helicopters)
- Use of ABAQUS & RADIOSS
- Use of detailed honeycomb core knowledge to support fracture mechanics approach group discussion
Task 2: Analysis Development

Open items

- Analysis Workshop scheduled for October 2015, Wichita
 - Analysis coordination between partners necessary to avoid duplication of work
 - Honeycomb Core Fracture Mechanics Approach to be discussed

Achievements (status September 2015)

- Parametric Abaqus/Standard finite element model ready to simulate flat or curved panels under GAG-Cycle pressurization & in-plane loading
- Fracture Mechanics VCCT & CSDE
Task 3: Panel testing for analysis validation

- Evaluate the developed test methods and analysis tools using honeycomb sandwich panel tests

Validation Panel Testing

- Tests performed at NIAR
 - Internal core pressure, panel in-plane compression loading, combined loads
 - Static and fatigue
- Tests performed at DTU
 - Upgrading of existing test rigs are ongoing
Task 3: Panel testing for analysis validation

Edgewise Compression Disbond Test

- Matrix Static & Fatigue)

- GAG cycle pressurization
- In-plane loads
- Combination
- Test done in 2015

![Diagram of edgewise compression disbond test](image)

Validation
Task 3: Panel testing for analysis validation

Sandwich Panel Testing under preparation

• GAG-Cyclic loading is applied on honeycomb sandwich panel by regulating the compressed air at disbonded zone.

• Disbond propagation is monitored using digital image correlation (DIC)
Task 4: Sandwich Disbond Substantiation and Methodology Development

Airbus Nondestructive Inspection (NDI)

- Ultrasonic Impulse Echo and Elasticity Laminate Checker (ELCH) were developed to detect disbonded or cracked core of the far side of the sandwich structure under maintenance conditions with the required level of inspection sensitivity.

- Recent Airbus NDT & GE development on phased array roller probe

GE- Roller Probe
- 60 elements, linear array
- 0.5 MHz
- Active array 120mmx20mm
Task 5: CMH-17 Vol. 6 implementation

- Gather and study relevant case studies (Aviation, Space, Marine, etc.)
- Identify, describe and address the phenomenon associated with facesheet/core disbonding and core fracture
- Document findings in new chapters of CMH-17 Vol. 6
 - Develop chapter on mode I fracture toughness testing based on ASTM SCB standard
 - Develop chapters on mixed-mode fracture toughness testing, fatigue and environmental effects
 - Develop chapter on analysis methods
 - Develop chapter on fracture mechanics based methodology for sandwich face-sheet/core disbonding
Linked Research

Mark Tuttle University of Washington

- Moisture Diffusion in Sandwich Composites
- FAA funded project (Start Sep. 2015)

- Overall objective: Determine if condense-freeze-thaw-evaporate cycle within core region cycle is detrimental:
 - Change in bending stiffness, E_{eff} (measure using 4-pt bend)
 - Change in GI and GII (measure using methods being developed by Adams et al @ Univ of Utah)
 - Produce “large number” (suggest 32) of instrumented panel specimens (16 with autoclave, 16 with hot press)
Summary

• Damage growth in unvented honeycomb sandwich structures due to Ground-Air-Ground (GAG) pressurization and in-plane loading

 ➔ Degradation due to disbonding affects operational safety

• CMH-17 group – objective - Develop matured, accepted & documented methods for assessing propensity of sandwich structures

 ➔ Fracture Toughness SCB ASTM Test Standard
 ➔ Analysis Tool Box validated by test to assess disbonds
 ➔ To achieve the goal of the CMH-17 working group the FAA / EASA funding is essential and/or wider involvement of industry
 ➔ Airbus is already key sponsor of the group activity
Q&A