Operator Field Experiences and Future Perspectives

Eric Chesmar
19 Sept 2015
Topics

Field Experiences
• Bonded FCBS structures
• Monolithic versus Honeycomb repairs

Future Perspectives -
• Regulatory
• Industry standardization
• Airline / OEM exchange
Field Experiences – Context

FCBS Structure:
- Added by Part 26 Aging Aircraft rule
- Parts not PSE but are FCBS
- Major Repairs requiring FAA-approved data

<table>
<thead>
<tr>
<th>Component PSE and FCBS</th>
<th>747-400</th>
<th>737-300/500</th>
<th>757-200</th>
<th>767-300</th>
<th>777-200</th>
<th>A320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevator</td>
<td>X</td>
<td>1,2,3,4,8</td>
<td>X</td>
<td>1,2,3,4</td>
<td>4,7</td>
<td>1,2,4</td>
</tr>
<tr>
<td>Rudder</td>
<td>1,2,3,4</td>
<td>1,2,3,4</td>
<td>1,2,3,4</td>
<td>4,7,8,1,2</td>
<td>1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Spoilers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Aileron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>OB Flap</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>X,7</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>IB Flap</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>X,7,3</td>
<td>1,2,3,4,5,8</td>
</tr>
<tr>
<td>LE Devices</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>2,6</td>
</tr>
</tbody>
</table>

Notes:
- Sub-components:
 1. Spar
 2. Skin
 3. Ribs
 4. Fittings
 5. Nose cap
 6. TE Wedge
 7. Main box
 8. Tab
- Primary Material Color Code:
 - Graphite and hybrid
 - Fiberglass
 - Metalbond
 - Sheetmetal

Red = added for FCBS
Field Experiences

- Composite experience at airlines is resides in shops
- UAL Composite repair history -
 - Composite shop capabilities evolved
 - 1st autoclave in 1960s for metalbond repairs on DC10, 727, etc.
 - PABST program
 - 2nd Autoclave in 1974, with PAA line, bond room, etc.
 - Bigger freezer in 1990s for prepregs
 - Mechanical test lab and receiving inspection program in 1991
 - Rebuilding / Skin and core replacement
 - Flaps, Slat Wedges, Wing panels
 - Metal-bonded parts before corrosion-inhibiting primers and better anodizing
 - Large damage due to trucks, FOD, etc.
 - Fleet campaigns to fix design problems such as 757 Spoilers, Slat Wedges, Graphite fan Cowls with aluminum honeycomb, moisture ingestion
 - Support of hanger checks
 - Heat blanket repairs to minimize disassembly and exposure to heat
 - Parts sent to shop
 - Mechanics sent to airplane for on-wing repairs
Field Experiences

FCBS Repairs –

- See past examples from Todd Harrington in ATL 2009, and myself in Tokyo Workshop 2009:
 - Elevator, Ailerons – large repairs from ground equipment damage
 - Rudders – spars spliced
 - Flaps – reskin of aluminum honeycomb skin panels

Non-FCBS: Primary and secondary structures:

- Authorized by SRM, SBs, with approval/help of OEM
 - 757 spoiler SB – over 500 Spoilers re-skinned.
 - 747/757/767 Inlet cowl SB and Rework Drawing - Outer Barrel Kevlar removal
- Nacelles – large damage and repairs
 - Sources is heat, trucks, burst ducts, boroscope plugs left out, engine fires, engine temps higher than design objectives.
 - Highest cost structural component make repair a economic necessity and able to justify large investments

Fan Cowls

- Pre-cured graphite skins secondarily bonded to alum honeycomb
- Developed in-house a FAA-approved Reskin procedure, with little assistance from OEM.
- At worst, we were seeing over 120 removals per year for fleet of 620 Fan Cowls
- Over 200 Reskins to date
Field Experiences

Monolithic FCBS includes:
- A320 and 777 Flaps - Main Box
- A320 and 777 Horizontal and Vertical Stabilizer

On-wing field repairs repair options:
- Bonded repairs – not many published to restore original strength – and limited in size
- Add fasteners – disbonded stringers, or at risk of disbond
- Bolted patch with graphite autoclave cured repair parts
- Bolted patch with metal repair parts
Field Experiences

Large punctures - only options have been:
- Bolted patch with graphite autoclave cured repair parts
- Bolted patch with metal repair parts

When evaluation cycle time to make parts, metal bolted repairs
- Fasteners are difficult to procure
 - Blind composite bolts - coatings not standardized
Field Experiences - Success Factors:

Definition of success:
- Equivalent safety and risk
- Part 43.13 standard of repair = Equivalent or better to original
- Economical to operate airplane and salvage the component

Successful accomplishment of composite repairs depends on:
- Investment by Repair Station in facilities, tooling, training, materials to ensure repeatability and reliability
 - First article and Destructive testing
 - Training program – limited crew, detailed OJT, and monitoring in every step
 - In-process QC – verifilm, thermal survey, post-repair NDT
- Support from OEM to share original design info
 - Material of construction
 - Process details
 - Quality controls
 - Manufacturing allowables
 - Inspection methods and Pass/fail criteria
Future Perspectives
Future Perspectives/Opportunities within regulations

Major Repairs are Required Inspection Item (RII)
- Metal repairs have well-established in-process quality inspections:
 - Damage assessment and removal
 - NDT
 - Doubler fabrication
 - Repair layout
 - Clearance to close
 - Fastener inspection
- What would equivalent steps be in bonded repair?

FCBS are defined as Major Repairs and require FAA-approved data
- Service Difficulty Reports required for major repair accomplishment
 - Find repairs by MROs not asking for OEM assistance
- Repairs require DTA/OEM support.
 - What’s required for OEM approval?
 - How much interaction, oversight, QC required?
Future Perspectives/Opportunities – OEM Support

Example of Elevator repair to both panels and rib – critical areas – no SRM repair

Finished repair - OEM support included 22 messages over 2 months, pre- and post-repair NDT, contour measurements, tool fab, cure verification, etc. Classified as CAT A – permanent.
Future Perspectives/Opportunities – OEM support

Opportunities for improvement via airline/OEM exchange

- Successful maintenance and repair (defined as equivalent or better than original) depends on:
 - OEM planning for repair during certification to account for reparability
 - Test materials for exposure to multiple cure cycles to allow repair at original cure temperatures
 - Plan for disassembly
 - Sell replacement parts
 - Plan for superseded or replacement materials over lifetime
 - Support from OEM to share original design and process controls
 - Feedback by airlines to OEMs
Future Perspectives/Opportunities – via standardization

- SAE/CACRC – charter is to reduce cost of ownership while enhancing safety
- Comprised of industry experts from airlines, MROs, OEMs, Regulators, Academia, etc.
- Specialized Task Groups to write standards in areas including:
 - Training
 - NDT
 - Design
 - Materials
 - Repair Techniques
 - Analytical Techniques
 - Procedures - Repair Guidelines for large damage.
 - Metalbond Guidelines published - AIR 6291
 - Composite Guidelines in-process
Future Perspectives/Opportunities – via standardization

SAE documents - 22 published and 9 in draft:

- **Repair Techniques**
 - ARP 4977 – Drying of Thermosetting Comp. Mat.
 - ARP 4916 – Masking and Cleaning of Epoxy...
 - ARP 5144 – Heat application
 - ARP 5143 – Vacuum bagging
 - ARP 5367 – Machining
 - ARP xxx – Clean Room
 - ARP 5701 – Handling and storage

- **Analytical TG**
 - Development of allowable
 - Implementation in substantiation possible

- **Material TG**
 - AMS 3970 – Carbon prepreg material specification
 - AMS 2980 – Wet lay up material

- **Design TG**
 - AIR 5416 – Life cycle cost model
 - AE-27 – Design of Durable, Repairable, and Maintainable Aircraft Composites

- **Training TG**
 - AIR 4938A – Composite and Bonded Structure Technician/Specialist: Training Document
 - AIR 5279 – Composite and Bonded Structure Inspector: Training Document
 - AIR 5278 – Composite and Bonded Structure Engineers: Training Document
 - AIR 5719A – Teaching Points for an Awareness Class on “Critical Issues in Composite Maintenance and Repair”
 - ARP 6262 – Basic composite Qualification certificate

- **Inspection TG**
 - ARP 5605A - Solid Composite Laminate NDI Reference Standards
 - ARP 5606A - Composite Honeycomb NDI Reference Standards
 - ARP 5089 – Composite Repair Ndt/Ndi Handbook

- **Procedures (was Airworthiness) TG**
 - CACRC10AA - Guidelines for Repair Process Evaluation of Aluminum Bonded Structure (work in progress)
Future Perspectives/Opportunities – via standardization

Repair Guidelines for Process Evaluation of Aluminum Bonded Structure

- 80+ page report
- Purpose:
 - Integrate Repair techniques in process flows, with QC recommendations
 - Institutionalize industry best practices
 - Provide guidance to MROs
 - Info that non-experts can use to evaluate MROs
Future Perspectives/Opportunities – via standardization

Checklist items for Prepare Surfaces for Bonding

INSPECTION
• If core is not replaced, confirm that there is no discoloration of residual adhesive.

ADHERE TO SURFACE PREP INSTRUCTIONS
• Confirm that bond surfaces have been cleaned according to the Repair Document.
• Confirm that abraded surfaces have been prepared only using the process and materials in the Repair Document.
• Confirm that cleanliness requirements of Repair Document have been followed.

APPROVED CHEMICALS FOR SURFACE PREPARATION
• Confirm that surface preparation only uses the chemicals approved by Repair Document.

FIGURE 21 - PREPARE SURFACES FOR BONDING FLOW
Future Perspectives/Opportunities – via standardization

Implementation:

- **Airlines** –
 - Training for QA and repair station auditors
 - Guidance for Engineers reviewing repairs and failures
 - Managers of internal shops

- **OEMs**
 - Repair engineers can refer it to MROs
 - Refer to AIR in SRMs for autoclave repair guidance

- **MROs**
 - Managers of can implement internally
 - Quality control
Thank you for your attention

- Questions?