CACRC AE-27 Guidebook: Design of Durable Aircraft Composites: Problems with Sandwich Structure

Eric Chesmar, United Airlines

17 May 2011
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites

Audience:
• OEM and subcontractor designers to in-service repair issues and problem design details.

Contents:
• Current design deficiencies of composites as seen in-service.
• Overview of materials and processes
• Examples of poor design detail with examples of preferred alternatives
• Design case studies - presenting a discussion on selected problems, successful design case studies.
• Available from SAE.org for $80.
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites

- Written by CACRC Design task group, consisting of 9 airlines members and 8 OEMs members
- Content based on survey of over 15 airlines
- Implementation by outreach to designers at OEMs. Presentations by Design Task Group available upon request.
- Goal to incorporate these lessons learned into company design guidelines
- Success will be measured by not repeating mistakes of the past
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites

Airline survey:
“What are top concerns with composites?”

- Durability & Impact Resistance
- Fluid Ingression
- Erosion
- Overheating
- Protective Finish (Paint)
- Complicated Repairs & Inspection Requirements
 - My interpretation of “complicated” =
 - Non-standardized, different repairs
 - Multiple people and skills required
 - Intermediate approvals or engineering needed
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Impact Resistance:

- FOD
- Ground / Maintenance
 - Service vehicles
 - Service stands
 - Tools
 - Drop
 - Improper use
- Normal line maintenance
 - Opening
 - Latching
 - Over-opening
- Hail

Elevator skin puncture in critical area
Impact Resistance - Hail:

- Design considerations
 - Minimum skin gauge
 - Minimum honeycomb density
 - Skins less than minimum should not be in critical areas, and should have large allowable limits.
 - Repair must be considered during design
 - Avoid thin skins in zones that are critical, or have no allowable damage, or not deferrable.

- SRM needs to be updated to address:
 - Crushed core – “soft” but passes tap test
 - Remove paint to evaluate damage
 - Seal against skin matrix micro-cracking
 - Hail damage to 3-ply graphite/honeycomb sandwich
Impact Resistance – Hail:
Evaluation, Allowable damage and repairability:

- Requires significant time just to evaluate. Consider there may only be cracked or delaminated paint.
- If beyond or not covered SRM, to get approval from OEM, the evaluations must be transferred to maps. Time increases ten-fold.
Fluid Ingression:
- Hydraulic fluid
 - Fluid leaks are not unusual from many hydraulic system components
 - Difficult if not impossible to remove from damaged parts
 - Protect panels that are below hydraulic components that will leak, such as Belly Fairings and Fan Cowls.
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Fluid Ingression:
- Square-edged panel close-out
 - Porous Foaming adhesive
 - Film adhesive bondline
 - Alum honeycomb edges painted with primer
 - Alum honeycomb corrodes
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Fluid Ingression:
- Close-out of trailing edge wedges – aluminum metalbond
 - Ingress through square edge close out and bondline
 - Propagation via foaming adhesive
 - Failure mode is corrosion of aluminum honeycomb
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Fluid Ingression:
- Close-out of trailing edge wedges
 - Square-edged panel close-out without skin covering.
 - Phenolic sheet bonded to honeycomb.
 - Sealant breaks down over time or sheet is deformed.
 - Foaming adhesive allows propagation

X-ray of outboard end of Aileron showing extent of water ingestion into honeycomb
Fluid Ingression - Close-out of trailing edge wedges:

- Original design is a thin sheet bonded with sealant to honeycomb.
- Potting alone on end will crack with age and flexing.
- Alternative – Pot honeycomb and wrap skins.

Removed sheet that was covering outboard end.

Outboard end showing crushed honeycomb.
Fluid Ingression:

- Through skins –
 - Porosity from cure
 - Fracturing of skins and delamination after impact
 - Micro-cracking of matrix

Photomicrograph of impacted skin 3 plies 7781/epoxy prepreg, co-cured in autoclave to honeycomb
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Fluid Ingression:
Water progression/propagation
- Through film adhesive
 - Over cell walls
 - Porosity
- Through cell walls
 - Porous to water vapor

Photomicrograph of film adhesive fillet after autoclave cure
Fluid Ingression:
Water progression/propagation (continued)
- Through film adhesive
 - Along scrim/carrier
 - Gaps due to poor fit-up core and skins

Vacuum-bag metalbond repair
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Spoiler View with lower skin removed
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Fluid Ingression:
- Fasteners through skin into core
- Porous Foaming Adhesive or potting – porous so acts as water path
- Honeycomb splices and cavities not completely filled
Fluid Ingression:
- Honeycomb septum has high porosity
- Tooling holes in spar
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Fluid Ingression – Example of ongoing maintenance issues:
- Water found visually at overnight check. No delamination, no scratches. Tap test fine, but thermography performed showed water scattered across about 30% of surface, but no single area more than 2” on cells with water touching.
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Fluid Ingression – Example of new maintenance issues:
- Checked with OEM for other operator experience.
- Refinished paint
- At engineering direction, deferred repair until next C-check with re-check at A-check.
- Before next check, we bought spare panels with 120 day lead time, built an autoclave tool, and performed 350F prepreg autoclave repair.
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Erosion:

- Surface mismatch or positive step or facing into wind
- Primarily fairings, leading edge panels, radome
- Can lead to delamination and moisture ingression

Thrust Reverser Sleeve
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Overheating:

- Engine cowls
 - Heat due to normal engine exhaust on pylon panels above and aft of tail cone
 - Actual in-service temperatures and heat higher than design. Example: Accessory compartment hotter due to engine core temperature
- Heat due to failed valves in open-position
- Heat from bleed air exhaust
Overheating:

- Engine cowls
 - Abnormal heat due to failed valves in open-position, or boroscope plug left out
 - Heat from to bleed air exhaust
 - Heat from due to failed valves in open position
Overheating:

- Air Conditioning exhaust vents on fuselage
 - Heat from bleed air exhaust after heat exchanger
 - Heat from due to failed valves in open position
 - Heat shields used which aren’t big enough
 - Heat shield materials not

Heat shield aft of AC exhaust
AE-27: Design of Durable, Repairable and Maintainable Aircraft Composites: Sandwich Designs

Protective Finish (Paint):
- Needed for protection of structure against UV, moisture, and erosion, etc.
- Observations:
 - Paint is process sensitive – many premature failures
 - Fillers and excess thickness still wide-spread practice
- Recommendations
 - Touch up of in-service wear and tear should part be standard maintenance program - monitoring and corrective action program
 - Need to stress cosmetic versus protection functions
 - Need to publish limits to on size and time allowed to defer re-painting of bare composite structure for line operations
Final thoughts on Fluid Ingression:

- Freeze-thaw cycle commonly identified as failure, but not verified.
- Water lowers adhesive strength
- Honeycomb & Foam Cores both susceptible

“Nature abhors a vacuum”. Assume water will get in.

- Water can enter as liquid and vapor
- Water continues to accumulate and spread over time until leak path is eliminated or sealed
- Water in honeycomb is inevitable and acceptable
 - Assuming weight not an issue, water does exist inside honeycomb
 - What level is acceptable?
 - For how long will it be acceptable? Propagation rates?