Los Angeles ACO Experience

Use of Dynamic Analysis Methods For Aircraft Seat Certification

Presented to:
By: Patrick T. Farina, P.E.
Date: 07 – 08 August 2012
Benefit

• Two seat design companies have tested the waters within the past 2 years

• Desired benefit
 – Shorten development time
 – Reduce number of costly development tests
 – Ability to down select and optimize new designs
Time Issue

• Both companies typically create derivative seats
 – Built in ability to create new seat configurations for delivery in as little as 3 months
 – Modeling current seat design requires long lead time.
 – Unwillingness to hire/create new modeling team
 • Initial start-up cost to create data base of previous designs
 • Manpower cost for dedicated engineering team
Hurdles

• **Need design to be CAD/CAE**
 – Ideal is to build design and model at same time
 – Reality is to model what you have

• **Validation of Model**
 – Ability to take past dynamic data to use in validation
 • Interest has come from newer entrants into seat design rather than from the established seat designers.
 • Established seat manufacturers have more data that could be used to establish a model base.
 • Were there enough measurements and loads acquired to accurately model?
Hurdles

- **Validation of Model (cont)**
 - Revalidation when design is not a derivative or novel design is implemented
 - Seat Pan: Metallic, Honeycomb and Dymetrol
 - Beams: Nested tube vs single variable wall tube
 - Floor seat track to floor and wall mounted seat tracks
ACO Challenge

- Branch does not have experience in this area
- Not conversant with the industry recommended practice, ARP 5765
- Not conversant with the FAA AC 20-146
Thought to Ponder – Failure

• **Case study**
 – Applicant had previously tested this seat and passed with no issues
 – FAA shows up to observe for credit test.
 • Would the model have been able to predict this failure?