Lessons Learned from CACRC Depot Bonded Repair Round Robin Investigation

Dr. John Tomblin and Dr. Lamia Salah
NIAR/ WSU

September 15th, 2015
CACRC Depot Bonded Repair Investigation

- **Principal Investigators & Researchers**
  John Tomblin Ph.D., Lamia Salah Ph.D.
  Chathuranga Kuruppuarachchige, Ruchira Walimunige

- **FAA Technical Monitors**
  Curtis Davies, Lynn Pham

- **Other FAA Personnel**
  Larry Ilcewicz Ph.D.

- **Industry Participation**
  Spirit Aerosystems – John Welch, Brian Kitt, Mike Borgman, Ming C. Liu, Jeff Dempsey
  Boeing – Russell Keller
  Airbus – Francois Museux
  Lufthansa Technik AG – Jan Popp
  Delta – Ray Kaiser, Nathan Schulz
  United Airlines – Eric Chesmar, Dean Jerry
  Nordam – Suranga Nagendra
  Aviation Technology Associates – Marc Felice
  Hexcel – Justin Hamilton
Introduction – Technological Challenges

Motivation/ Key Issues

- Major Technological Advances using Composite Materials in the last 50 years (composite materials used for the first time in wing and fuselage load bearing structures)

Technological Challenges

- Material fabrication and Processes, analysis methods, structural health monitoring, lightning strike protection, recycling, repair methods and standardization

Important Considerations for continued airworthiness [2]

- Durability, environmental resistance (Brittle nature of polymers, weak interfacial bonds)
- Repairability, supportability (development of repair methods, in-service maintenance versus OEM environment, chemical and mechanical properties of materials)
- Maintainability (simple assemblies, easy access to hardware, clearly defined ADL, CDT early development of repair methods)

References:
Introduction – In Service Experience

Lessons Learned:

- Outstanding performance where reliable processes were used
- Numerous in-service failure with deficient processes
- Surface preparation yielding a clean chemically active interface resistant to degradation is necessary for a durable bond
- Adhesion failures are caused by deficient processes (pre-bond contamination, poor surface preparation, inadequate cure parameters that inhibit the formation of strong chemical bonds)
- Cohesion Failures are caused by poor design (thermal residual stresses, stiffness mismatch between adherends, poor material selection, inadequate repair overlap, porous bondlines)
- NDI methods cannot guarantee absolute bond integrity

Complete Overhaul of a Composite Fan Cowl
Research Objectives

- Evaluate the existing CACRC standards and approved materials used for repair of composite structures
- Assess the repair process variability between depots, using the same repair document procedures (similar to industry standard repair manuals) using CACRC repair techniques and materials provided to all the depots
- Investigate the variability associated with technician training (minimal level of experience versus extensive experience) on the performance of the repair
- Compare strength of the different repairs (CACRC-R1/R2 field repairs vs OEM-R1/R2 repairs) to a set of control “pristine” panels and to a set of open-hole scarfed panels
- Evaluate the environmental effects on the static and residual strength after fatigue of these repairs
Research Approach/ Methodology

Sandwich Repair Element Configuration
Representative of production hardware/ materials and processes

- Large beams, 11.5” x 48” with the repair tested in compression and tension modes
- 2.5” hole diameter to maintain a W/D>4
- 2” thick core, 3/16” core cell size, 8 pcf, 4-ply facesheets
- No core restoration, facesheet repair only (FS2)

Parent Material:
- T300/ 934 3KPW with FM 377S adhesive (OEM)

Repair Materials:
- CACRC repair 1: Hexcel M20 PW (250°F cure) with EA9695 adhesive (AMS 3970)
- CACRC repair 2 (wet lay-up): G904 D1070 TCT fabric with Epocast 52A/B laminating resin (AMS 2980)
- OEM repair 1: using the parent system (350°F cure)
- OEM repair 2 (wet lay-up): T300 fabric with EA9396 C2 laminating resin and EA9696 adhesive
## Test Matrix

<table>
<thead>
<tr>
<th>Repair Station</th>
<th>Element Configuration</th>
<th>Repair Material</th>
<th>Loading Mode</th>
<th>Experience Level</th>
<th>Static RTA</th>
<th>Static ETW</th>
<th>Fatigue ETW</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Pristine/ Undamaged</td>
<td>N/A</td>
<td>Compression</td>
<td>3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>Unrepaired /2.5&quot; hole/Scarf</td>
<td>N/A</td>
<td>Compression</td>
<td>3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>OEM</td>
<td>Repair/ 2.5&quot; hole/ 0.25&quot; scarf overlap</td>
<td>OEM-R1</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>OEM</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>OEM-R2</td>
<td>Compression</td>
<td>M2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NIAR</td>
<td>Repair/ 2.5&quot; hole/ 0.25&quot; scarf overlap</td>
<td>NIAR</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NIAR</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>NIAR</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NIAR</td>
<td>Repair/ 2.5&quot; hole/ 0.25&quot; scarf overlap</td>
<td>NIAR</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NIAR</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>NIAR</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NIAR</td>
<td>Repair/ 2.5&quot; hole/ 0.25&quot; scarf overlap</td>
<td>NIAR</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NIAR</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>NIAR</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Field Station 1</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>Field Station 1</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Field Station 1</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>Field Station 1</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Field Station 2</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>Field Station 2</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Field Station 3</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>Field Station 3</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Field Station 4</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>Field Station 4</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Field Station 5</td>
<td>Repair/ 2.5&quot; hole/ 0.5&quot; scarf overlap</td>
<td>Field Station 5</td>
<td>Compression</td>
<td>M2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Repair Materials:**

- OEM-R1: T300/934 w FM377 adhesive
- OEM-R2: EA9396 C2 wet lay-up w EA9696
- CACRC-R1: Epogest 52A/B wet lay-up
- CACRC-R2: M20PW with EA9695 adhesive

**Experience Levels:**

- M1: Minimal level of Experience
- M2: Experienced Mechanic

**Loading Modes:**

- Compression
- Tension

**Experience Levels:**

- RTA: Room Temperature Ambient
- ETW: Elevated Temperature (180°F) Wet
Parent Panel Manufacture Assembly I

- Parent materials provided by the OEM
- Panel manufacture conducted at NIAR/NCAT using OEM approved processes verified by OEM quality assurance inspectors (40 large panels)
- Assembly 1 (uncured facesheet1(FS1) and potted core) co-cured at 350°F for 120 minutes at 45 psi

*Facesheet 1 (FS1) lay-up*
*Film Adhesive Application*
*Corfil Application*
*Core Application onto facesheet 1 (FS1)*
*Assembly 1 Bagging and preparation for cure*
Parent Panel Manufacture
Final Assembly

Uncured Assembly 2 (facesheet 2 and adhesive) co-bonded to cured assembly 1

Assembly Bagging in preparation for cure
Sandwich Repair Element Design Validation

- 3 undamaged-pristine beams were tested to establish the undamaged parent element capability at RTA
- Good correlation between experimental results and predictions
- Average failure strains (-9335µε -compression and 8492µε -tension )

Typical Failure Modes – Undamaged beams
Repair Instructions and Kit preparation

- A detailed Repair Document procedure (similar to industry standard repair manuals) referencing the relevant SAE CACRC standards was reviewed and approved by the technical monitors, industry POCs and participating airline depots before performing the repairs.
- Repair process checklists with inspection points for both wet lay-up and prepreg repairs were provided to the repair personnel along with the CACRC standards (detailed process documentation).

Repair kits (using CACRC approved materials) were prepared and shipped to all participating depots:
- Hexcel M20/G904 prepreg
- EA9695 NW 0.05 psf film adhesive
- Hexcel G904 D1070 TCT, PW dry fabric, 193 g/m² using Tenax Fibers
- Huntsman Epocast 52A/B resin
- Peel ply and perforated film for wet lay-up bagging

Notes:
- Difficulties in material procurement, long lead times and difficulty obtaining small quantities.
- CACRC Materials not commonly called out today in composite repairs.
CACRC Repairs - Depot #1

- Depot 1 performed repairs with CACRC materials (CACRC-R1 and CACRC-R2) only as defined in test matrix table.

**CACRC Repair Element Masking in Preparation for Scarf Sanding**

- Wet lay-up resin impregnation

- Scarf/Taper Sanding

- Wet lay-up repair ply application

---

2015 FAA/ Bombardier/ TCCA/ EASA/ Industry Composite Transport Damage Tolerance and Maintenance Workshop
Depot 2 performed repairs with CACRC materials (CACRC-R1 and CACRC-R2) only as defined in test matrix table.
CACRC Repairs - Depot #3

- Depot 3 performed repairs with CACRC materials (CACRC-R1 and CACRC-R2) only as defined in test matrix table.

Element scarf sanded in preparation for repair

Wet lay-up resin impregnation

Wet lay-up repair application

Repair Bagging in preparation for cure
CACRC Repairs - Depot #3

Adhesive application – prepreg repair

Repair application – prepreg repair

Repair Bagging

Repair Masking – prepreg repair

Thermocouple Application – prepreg repair

Cured repair
Depot 4 performed repairs with CACRC materials (CACRC-R1 and CACRC-R2) only as defined in test matrix table.

Repair Element Scarf Sanded in Preparation for Repair

Repair Elements Scarfed and prepared for Drying

Repair Element Drying

Repair Application

2015 FAA/ Bombardier/ TCCA/ EASA/ Industry Composite Transport Damage Tolerance and Maintenance Workshop
CACRC Repairs - Depot #5

- Depot 5 performed repairs with CACRC materials (CACRC-R1 and CACRC-R2) only as defined in test matrix table

Scarfed Elements prepared for drying

Prepreg Repair Application

2015 FAA/ Bombardier/ TCCA/ EASA/ Industry Composite Transport Damage Tolerance and Maintenance Workshop
CACRC Repairs - Depot #5

Wet lay-up ply impregnation

Wet lay-up repair application

Wet lay-up repair application

Wet lay-up repair bagging in preparation for cure

2015 FAA/ Bombardier/ TCCA/ EASA/ Industry Composite Transport Damage Tolerance and Maintenance Workshop
OEM-R1 Prepreg Repairs

Scarfed panel ready for repair

Repair Adhesive Application

Repair Application

Heat Blanket Application

Panel Curing

2015 FAA/ Bombardier/ TCCA/ EASA/ Industry Composite Transport Damage Tolerance and Maintenance Workshop
OEM-R2 Wet Lay-Up Repairs

- Scarfed panel ready for repair
- Wet Lay-up Fabric Impregnation
- Wet lay-up Repair ply application
- Wet lay-up repair bagging
- Heat Blanket Application
- Repair panel cure
CACRC Depot Repairs – Technicians Experience

Experience
- 16 Repair Participants took the survey
- 75% of all mechanics had an airframe or an A&P license
- Varying levels of experience and competency with composite materials
- OJT (Wet Lay-Up Repairs, Prepreg Repairs)

Technicians’ Perspective
- More accessibility to engineering documentation and data
- Training with OEM documents and SRMs, training to particular repair manual (differences between aircraft to aircraft)
- No one standard structural repair manual (“2 years to get familiar with one SRM”)
- Need for standardized SRMs and for material standardization (more robust processes, improved efficiency “5 days spent gathering repair information and tooling/ 5 hours to complete the repairs”)
- Importance of training for a better understanding of the repair process for more effective and repeatable repairs and to minimize rework
OEM/ Repair Station or MRO
- Many repairs are performed on similar parts at an OEM, whereas at an airline depot a mechanic may only repair a given part occasionally (practice/training needed on the same part)
- Constraints to perform the repair within a limited timeframe (AOG), Continuity between shifts

CACRC Standards
- CACRC standards cannot be used as a sole document without a detailed repair document, can be used along with an SRM
- Best practices/ techniques for repair (repair designer’s responsibility to select which ones to use)
- Part specific document required (Ideally a part specific SRM)
- Difficulties interpreting the standards (wet lay-up repair standard, mixing ratios in ARP 5256), missing or incomplete information as well as unfamiliar nomenclature (mushroom sanding disk holder)
Results – CACRC Prepreg Repairs using M20 PW/ EA9695

- 33 data points (instead of 39): 5 repairs not completed, 1 element damaged during testing
- Repair Element Average Strength: 30.5ksi Min=22.1ksi, Max=38.0 ksi, CPT=0.0083”, COV 14.1%
- Undamaged Element Strength: 35.4ksi Min=32.9 ksi
- Unrepaired Open-Hole Scarf Strength: 13.7 ksi
- M20 Laminate Compression Q1 OHC/UNC B-Basis Value (CMH-17) 24 ksi/ 30.1 ksi
All baseline/ Undamaged Elements yielded facesheet compression failures in the gage section.

Results – CACRC Prepreg Repairs – Representative Failure Modes
All elements repaired with CACRC prepreg yielded laminate compression failures in the gage section (48% failed outside the repair, 52% failed within the repair)

No adhesion failures, all facesheet failures
All elements repaired with CACRC prepreg yielded laminate compression failures in the gage section (48% failed outside the repair, 52% failed within the repair)
Results – OEM Prepreg Repairs – Representative Failure Modes

All elements repaired with OEM prepreg yielded laminate compression failures in the gage section outside the repair.

Failure Location

Failure Location

Failure Location

Failure Location

Gage Section

Gage Section

Gage Section

Gage Section

0.25” scarf overlap repair

0.5” scarf overlap repair

0.25” scarf overlap repair

0.25” scarf overlap repair
Results – CACRC Prepreg Repairs using M20 PW/ EA9695

- Repair data (CACRC-R1), repair elements tested at 180°F (Wet)
- Participant#3 performed only one CACRC-R1 prepreg repair

2015 FAA/ Bombardier/ TCCA/ EASA/ Industry Composite Transport Damage Tolerance and Maintenance Workshop
Post Test Analysis

- Post-Test Analysis conducted on 18 elements repaired with M20
- Thermal Analysis
- Physical Tests
- Photomicrographs

- Optimal repairs
  - Porosity levels less than 3.8% (failure outside the repair)
- Low Performance repairs
  - High porosity (Up to 11%)
Post Test Analysis, Porous Repair
Post Test Analysis, Low-Porosity Repair
Some Key Lessons

- **Infrastructure for maintenance and supportability** – robust repair design and execution will yield strong durable bonded repairs

- **CACRC standards** cannot be used as a sole document without a detailed repair document, can be used along with an SRM
  - Best practices/techniques for repair (repair designer’s responsibility to select which ones to use)
  - Part specific document required (Ideally a part specific SRM)

- **Workforce Training**
  - Composite repair personnel training, certification and periodic training re-validation
  - Part specific training, taking into account learning curve (practice/iterations with actual parts yielding consistent repairs)
Some Key Lessons

- Repair process development and substantiation
  - Knowledge transfer (training, robust repair instructions, repair records and documentation)