Design of Energy-Absorbing CFRP Stanchions for the Cargo Floor Structure of Transport Category Airplanes

2013 Technical Review
Paolo Feraboli & Max Spetzler
University of Washington
Design of Energy-Absorbing CFRP Stanchions for the Cargo Floor Structure of Transport Category Airplanes

Motivation and Key Issues

- Airframe-level crashworthiness regulations expected to enter CFR
- Crashworthiness of all-composite structures relatively new topic in aviation

Objective

- Streamline certification process
- Develop guidance material

Approach

- Develop crashworthiness certification protocol for a virtual generic all-composite Part 25 airplane
Design of Energy-Absorbing CFRP Stanchions for the Cargo Floor Structure of Transport Category Airplanes

**Principal Investigators & Researchers**
- Paolo Feraboli, Research Professor (PI)
- Bonnie Wade (PhD student)
- Max Spetzler (PhD student)

**FAA Technical Monitor**
- Allan Abramowitz

**Other FAA Personnel Involved**
- Dr. Larry Ilcewicz (Technical Advisor)
- Curt Davies (JAMS Program Manager)

**Industry Participation**
- Dr. Mostafa Rassaian, Boeing/BR&T (Technical Advisor)
- Kevin Davis, Boeing/BCA (Technical Advisor)
Crashworthiness certification protocol

- Building Block Approach adapted to crashworthiness
- Based on analysis supported by test evidence
- Successfully adopted by Boeing for 787 to meet Special Conditions
- Certification by test not likely to be an option for Part 25 but may be considered for Part 23

Courtesy: Boeing
Typical twin-aisle fuselage layout & dimensions

- Separate passenger and cargo floor
- Dimensions largely determined by
  - Passenger space requirements
  - Standard cargo container dimensions
- Cargo floor structure as ‘crush zone’ to improve vehicle crashworthiness
Cargo floor structure as ‘crush zone’

- Cargo floor stanchions may be designed to absorb energy through progressive crushing in case of a crash.
- Dual functionality of stanchions:
  - Carry all operational loads according to airworthiness requirements.
  - In crash event: 1. Separate from frame 2. Crush on inner skin surface to absorb energy.
Stanchion separation

- Three configurations tested to investigate how failure can be triggered at desired location
- Channel-section type stanchions, 190mm long
- T800/3900-2 PW fabric, all 0°
- Displacement control, 50mm/min
Stanchion separation

- Failure preceded by local buckling in all cases
- Rupture triggered by any kind of discontinuity
- Interaction between separated pieces
  - Tearing into flat segments
Proof of concept with full-length stanchions

- 4\textsuperscript{th} and 5\textsuperscript{th} configuration derived from test results
  - Flanges trimmed off to trigger failure and avoid interaction
  - 380mm length
  - Multiple thickness transitions to encourage progressive failure
Proof of concept with full-length stanchions

initial separation
progressive crushing
Stability of progressive crushing - Test

- Full-length tests showed that crushing is not necessarily stable
- Conditions for stable crushing of interest

- Crushing tests of C-section specimens with varying thickness (6, 8, 10 and 12 plies, all in 0°-direction)

One end reinforced for clamping (+2 plies)

45° chamfer crushing trigger on other end
Stability of progressive crushing - Test

- Thick specimens (10-12 plies)
  - Local buckling patterns of low amplitude visible initially
  - Stable crushing
  - High specific energy absorption

- Thin specimens (6-8 plies)
  - Severe buckling of web and flanges throughout process
  - Crushing repeatedly disturbed by rupture at a distance form the crush zone
  - Significantly lower specific energy absorption
Stability of progressive crushing - Test

- Crushing under buckling deformation coincides with unsteady part force-displacement curves
- Laminate failure outside of crush zone causes load to drop and reduces energy absorption
Stability of progressive crushing - Analysis

- Finite element model of specimen (LS-DYNA)
  - 2.5mm mesh size, fully integrated shell elements (type 16), MAT54
  - Nodes constrained at location of hydraulic grips
  - Edge load applied at other end (Represents load imposed onto specimen by the crush zone)
  - Loaded edge ‘pinned’
- Length of specimen varied
- Two types of analysis
  1. Implicit buckling analysis (eigenmode analysis)
  2. Explicit non-linear failure load analysis
Stability of progressive crushing - Analysis

- Both analysis types predict buckling patterns (pictures from non-linear analysis)
- Failure location (non-linear analysis) depends on laminate thickness
  - 6-8 plies → at a distance from crush zone
  - 10-12 plies → at loaded edge
Stability of progressive crushing - Analysis

- FEA failure load gives upper bound on loads
- Stable crushing if $P_{\text{buckling}} > P_{\text{failure}}$
Stability of progressive crushing - Analysis

Type 4

Type 5
Conclusion

- Typical transport category airplanes feature stanchions in the cargo floor structure, which can be designed to improve crashworthiness of the airframe.
- Energy absorption through progressive crushing of CFRP stanchions requires certain design features in the stanchions.
- To increase energy absorption, the C-channel stanchions need to separate from the structure on one side so that they may subsequently crush.
- A discontinuity (thickness transition, change of flange height) at the desired location can trigger separation after local buckling of web and flanges.
- Stable crushing requires that the laminate does not fail outside the crush process zone.
- Buckling and failure loads obtained from finite element analysis may be used to assess if crushing will be stable or not.
Looking Forward

- Subcomponent-Level Test and Analysis
Looking Forward

Benefit to Aviation

- Provide guidance for certification process
- Increase confidence and therefore level of safety

Future needs

- Guidance material for all levels of the BBA
End of Presentation.

Thank you.