Topics

• Blade Erosion Sheath Bonding Repair Service Experience

• Primary Blade Metal to Composite Joint Life Evaluation
Composite Blade Components

- Lightning strap
- Shield
- Hollow composite spar
- Deicing heater
Blade Erosion Shield/Sheath Bonding Repair Service Experience
Example Shield Bonding Process

• Repair: Post-bond
 – Remove shield from storage bag
 – Clean bonding surface
 – Apply adhesive
 – Assemble shield to blade
 – Cure adhesive

Note: Some manufactures use different processes for production and repair
Historical Causes of Failure

• Silicone contamination
 – Silicone transfer from masking tape to bond surface during cleaning
• Improper adhesive mixing
• Skipped process steps
 – Lack of or inadequate primer
 – Primer removal not performed
Corrective Actions

• Manual changes
 – Cautionary notes added
 – List of approved tapes added to the manual
 – Extra Inspection steps added

• Repair shop audits and training

• Removal from service of affected blades
Primary Blade Metal to Composite Joint Life Evaluation
Background Joint Information

- The blade primary joint is the attachment for the composite blade to the metallic retention

- The area is a complex construction
 Materials include: Primer, Adhesive, Resin, Graphite, Kevlar, and Glass

- Joint damage includes de-bonding, delamination, and cracking
Primary Metal to Composite Joint
Two Examples
Joint Design Philosophy

• Damage is inherent in the joint and may grow with the repeated application of high loads

• The joint may be qualified such that it requires inspection at regular interval to assess damage growth

• The joint may be qualified such that it will require retirement prior to damage reaching a defined maximum permissible size
Phases of Damage Growth

- Region I - damage initiation phase
- Region II - damage growth propagates steadily and predictably
- Region III - advanced damage state
Life Qualification Process

The life qualification process requires full scale testing

• Lab test to determine failure mechanism
• Lab test to determine flaw growth data
• Flight test to determine loading
• Life Analysis to determine inspection interval and/or retirement time
• Lab test to validate analysis
• Lab test to determine residual strength
Full Scale Test Rig

- Peak stress near the blade root
- R ratio adjusted for flight condition simulated
- Forced response test
Determine Failure Mechanism

• Test Specimen. The specimen must represent actual type design

• Loading. The blade must be loaded to simulate the predicted critical loading environment

• Monitoring Failure Mechanism using NDI
 – Flaw Initiation
 – Flaw Growth
 – Test to Failure
 – Define the failure in terms of inspection criteria
Flaw Growth Inspection Area

(Available region for inspection may be limited)
Progression of Flaw Growth

Example Flaw Growth Data

Flaw Area (% of maximum) vs. Cycles

Test performed at constant amplitude

Assigned growth rate
Develop Flaw Growth Curve

Example Flaw Growth Rate
Example Measured Blade Loads on the Airplane

Blade response follows the:
- acceleration
- airspeed
- flap angle
Sample Components of a Flight Profile

Propeller fatigue is a combination of HCF and GAG cycles
Evaluation of propeller loads using aircraft load spectra

• The aircraft load spectra is supplied by the aircraft company.

• Propeller loads are computed for each condition from flight data.

• Each aircraft maneuver or gust represents many propeller load cycles due to propeller rotation.

• Stabilized ground and flight conditions and many maneuvers are verified by flight test.

• Non-testable flight conditions (such as vertical and lateral gusts) are estimated based on test data and analysis.
<table>
<thead>
<tr>
<th>No.</th>
<th>Condition</th>
<th>GW</th>
<th>Yaw deg</th>
<th>Bank deg</th>
<th>Flaps deg</th>
<th>Load g's</th>
<th>Flaps</th>
<th>RPM</th>
<th>Torque %</th>
<th>V KCAS</th>
<th>Time sec.</th>
<th>Events per 70hrs</th>
<th>Stress cycles per 70k hrs</th>
<th>Stress cycles per Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Taxi no crosswind</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>70</td>
<td>GI</td>
<td>0</td>
<td>100</td>
<td>35000</td>
<td>4.90E+07</td>
<td>466.66667</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Taxi 15kt crwind</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>70</td>
<td>GI</td>
<td>0</td>
<td>100</td>
<td>35000</td>
<td>4.90E+07</td>
<td>466.66667</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Taxi 25kt crwind</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>70</td>
<td>GI</td>
<td>0</td>
<td>100</td>
<td>35000</td>
<td>4.90E+07</td>
<td>466.66667</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TO roll</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>0-100</td>
<td>40</td>
<td>105000</td>
<td>8.40E+07</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TO rotation</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>110</td>
<td>2</td>
<td>105000</td>
<td>4.20E+06</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Climb A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>110</td>
<td>30</td>
<td>105000</td>
<td>6.30E+07</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Climb B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>130</td>
<td>40</td>
<td>105000</td>
<td>8.40E+07</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Climb Spectrum</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Contained in spectrum data below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Cruise Spectrum</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Contained in spectrum data below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Descent Spec.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Contained in spectrum data below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Approach Spec.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Contained in spectrum data below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Reverse max</td>
<td>1</td>
<td>0</td>
<td>35000</td>
<td>4.90E+07</td>
</tr>
<tr>
<td>13</td>
<td>Reverse 1/2</td>
<td>1</td>
<td>0</td>
<td>35000</td>
<td>4.90E+07</td>
</tr>
<tr>
<td>14</td>
<td>Vertical Maneuver Spectrum</td>
<td>1</td>
<td>0</td>
<td>35000</td>
<td>4.90E+07</td>
</tr>
<tr>
<td>15</td>
<td>Lateral Gust - Yaw Spectrum</td>
<td>1</td>
<td>0</td>
<td>35000</td>
<td>4.90E+07</td>
</tr>
<tr>
<td>16</td>
<td>Vertical Gusts</td>
<td>1</td>
<td>0</td>
<td>35000</td>
<td>4.90E+07</td>
</tr>
<tr>
<td>17</td>
<td>Extreme Maneuvers</td>
<td>1</td>
<td>0</td>
<td>35000</td>
<td>4.90E+07</td>
</tr>
</tbody>
</table>
Test to validate analysis

• The damage growth model must be verified by spectrum loading for the full-scale structure using loads established from the flight test.
• The detectable damage size and location must be established and be consistent with the inspection techniques employed in service.
• The definition of failure must be based upon the inspection method employed in service.
Test to determine residual strength

• The end of life condition is established in conjunction with the service life.

• The component at the end of life condition meets all airworthiness loading requirements.
Inspection Criteria

• Inspection methods should have a POD of 90% probability with 90% confidence.

• The defined inspection interval must permit multiple opportunities, usually three, to find the damage before the component reaches the end of life condition.
Final Inspection Program

• Conduct an inspection (usually ultrasonic) of the blade retention area at each inspection interval of xxx hours.

• Retire blade when the total area of acceptable bond is less than yyy sq centimeters.