Design Development and Structural Substantiation of Bonded Structure
- Breakout Session -

Moderators:
D. M. Hoyt, NSE Composites
Hyonny Kim, Purdue Univ.
Stephen Ward, SW Composites
Purpose of Breakout Session

• Reach agreement on “critical safety and certification issues”
• Focus on “what we need to worry about”
• Discuss “how-to’s” if time permits

• Initial design and repair development
 – Design
 – Data and analysis methods
 – Substantiation tests and analyses
Bonded Structure Design

• Design of part (and repair)
 – Design/size structure to fail outside bonded joint
 – Provide for redundant design features/load paths
 – Establish defect and damage sizes
 • Linked to inspection methods, policies (factory, in-service)
 – Consider tooling/manufacturing constraints
 – Consider maintenance (inspection) constraints
 – Establish sizing guidelines

• Design for repair
 – Include provisions in original design
 – Provide for repair access
 – Define max allowable repair size on primary structure
 • Structure w/ disbonded repair must sustain limit load
Bonded Structure Data and Analyses

• Data
 – Material properties and Statistical allowables
 • Stress-strain response as \(f(\text{env.}, \text{thickness}, \text{etc.}) \)
 • Fracture toughness for adherend and adhesive
 • Manufacturing variations (surface prep, curing, bondline thickness)
 • Manufacturing defects/anomalies
 – Strength with small damages, disbonds
 – Environmental durability
 – Point design data (lap shear, pull-off, etc.)

• Analysis Methods
 – Validated over range of design variables, environments
 – Predict static strength w/ and w/o defects
 – Predict durability: load cycling, env. exposure, long-term degradation
 – Predict damage tolerance w/ large disbond and/or damage

Appropriate scale for statistical assurance?
Bonded Structure Substantiation

• Static Strength
 – Validation of analysis methods
 – Validation of manufacturing process, including process “failures”
 – Validation of non-detectable defects, damages

• Durability
 – Demonstrate 2+ lifetimes load cycling + env. effects
 – Large scale tests at environment
 – Include non-detectable defects, damages
 – Demonstrate no-growth or validate growth predictions
 – Tests to protect on-going durability of the fleet

• Damage Tolerance
 – Demonstrate inspectability of potential damage
 – Demonstrate crack (disbond) arrestment ability
 – Test at worst realistic condition (cold?)

Appropriate scale for tests?
Engineering Practices to Address Key Issues
Industry Standards and/or Guidance Needs
Additional Research Needs