Structural Metal Bonding
At Cessna Aircraft
Discussion Points

- Cessna Experience
- Metal Bonding Process
- Process Control Philosophy
- Risk and Risk Mitigation
- Conclusions
Cessna Experience

- 1960s - Secondary structure
- 1970s - Primary structure, integral fuel tanks
- 1980s - Fully bonded airframe
- 40 Years Experience and 6000+ airplanes
Metal Bonding Process

- Phosphoric acid anodize
- Bond primer application
- Lay-up
- Bagging and tooling
- Autoclave cure
- Post-cure inspection
Phosphoric Acid Anodize

- Automated process line
 Clean, rinse, PAD, rinse, PAA, rinse, dry
- Rate issues
 Surface cleaning, water quality, solution aging
- Process control
 - Data acquisition of spec parameters: temp, time, voltage, current
 - Water break inspections
 - Current draw inspection
 - Wedge crack extension
 - Surface morphology
 - Periodic training
Bond Primer Application

- Manual airless spray
 Inspect, spray, flash, cure, inspect
- Rate issues
 Environment control, primer agitation, operator training
- Process control
 - Data acquisition of spec parameters: time, temp, RH, monitoring of air quality
 - Visual, polarized filter
 - Period operator quals
 - Visual and thickness
 - Wedge crack extension
Lay-up

- Adhesive application
 Inspect, cut, apply, inspect, assemble
- Rate issues
 Environment control, fit checks, operator training,
- Process control
 - Recording of spec parameters: temp, RH, air quality, Out-time-tracking
 - Buddy check for paper
 - Visual
 - Shop instructions
 - Controlled expendables
Bagging and Tooling

- Bagging
 Breather, sealant, bag, vacuum check
- Rate issues
 Operator training, tool maintenance
- Process control
 - Spec parameters: leak rate
Autoclave Cure

- Cure cycle
 - Load, instrument tools, leak check, start cycle, unload, debag, deflash
- Rate issues
 - Tool maintenance
- Process control
 - Data acquisition of spec parameters: temp, pressure, time, leak rate
 - Periodic shear and peel tests
Post-Cure Inspection

• Inspection
 Visual for FOD and other anomalies, ultrasonic inspection
• Rate issues
 Operator training
• Process control
 - Technician certification
 - Standards and calibration
 - Initial process qualification and subsequent requalifications for each bond assembly
Process Control Philosophy

“End of Process” inspection alone is insufficient for assuring structural integrity.
Risk

- A structural delamination and/or a bond failure can result in:
 - Safety issues
 - Customer dissatisfaction
 - Loss of confidence
 - Customers
 - FAA, other regulatory authorities
 - Degradation of reputation and Brand
 - Product liability (financial)
Risk Mitigation

- Process Control Mentality
 - Specification adherence
 - In process monitoring
 - Personnel training and qualification
 - NDI
 - Initial assembly qualification and subsequent requalifications

- Proper Facilities and Equipment
 - Process line design and control
 - Tooling design and maintenance
 - Autoclave design and control
Risk Mitigation

- Experienced and knowledgeable staff
 - Manufacturing and Facilities
 - Quality and Inspection
 - M&P and other Engineering

- Process and product improvements as a result of field experience – Lessons Learned
Conclusions

- Benefits outweigh the risks if properly managed
 - Documented and audited processes
 - Process control mentality
 - Proper facilities and equipment
 - Active maintenance programs
 - Experienced staff that understands:
 - How to do it
 - Why they are doing it