IN FIELD BONDING METAL REPAIRS. EFFECTS OF SURFACE PREPARATION.

Mr. Eneko Zumalde
M & P Engineering
Mr. Miguel A. Castillo
Sr. Stress Engineer
Background of study

- Temporary structural repair on metals
- Quick repair, 6 hours maximum
- Simple surface preparation
- Use of RT curing adhesive
- No complex tooling or equipment
Materials and Test Method

Material:
- Al alloy 2024 T3 bare AMS-QQ-A-250/4, Chromic anodized and coated with polyurethane primer
- Paste adhesive EA 9303.3 NA

Test Method:
- ASTM D 1002, room ambient condition
- Non conditioned test specimens
Procedure

- Preparation of test samples
 - Surface preparation of samples under uncontrolled repair workshop condition
- Application of adhesive paste and cure
- Test of samples
Surface Preparation

1. Primer coated. Samples are not stripped and adhesive is placed on top of original protective coating of sample (Paint)

2. Primer coated. Samples are not stripped, but the coating is sanded using 180 grit (P180)

3. Stripping of primer and cleaning with solvent (MEK)
Surface Preparation (2)

4. Stripping of primer and sanding with 180 grit paper, solvent cleaning (L180)
5. Stripping of primer and sanding with 240 grit paper, solvent cleaning (L240)
6. Stripping of primer and application of chemical conversion coating (Alodine 1200)
Test Results

<table>
<thead>
<tr>
<th>Surface Preparation</th>
<th>Lap Shear Strength (Mpa)</th>
<th>Adhesive Thickness (mm)</th>
<th>Failure Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEK (3)</td>
<td>18,250</td>
<td>0,228</td>
<td>Mixture</td>
</tr>
<tr>
<td>L240 (5)</td>
<td>17,150</td>
<td>0,166</td>
<td>Cohesive</td>
</tr>
<tr>
<td>L180 (4)</td>
<td>15,650</td>
<td>0,308</td>
<td>Cohesive</td>
</tr>
<tr>
<td>P180 (2)</td>
<td>15,080</td>
<td>0,192</td>
<td>Cohesive</td>
</tr>
<tr>
<td>Alodine 1200 (6)</td>
<td>12,840</td>
<td>0,304</td>
<td>Adhesive</td>
</tr>
<tr>
<td>Paint (1)</td>
<td>8,980</td>
<td>0,118</td>
<td>Adhesive</td>
</tr>
</tbody>
</table>
Discussion of Results

Shear strength baseline is 29 MPa. Regardless of the surface treatment the maximum shear strength obtained was only 60% of baseline at best.

Best results are obtained when the surface is roughened, original primer is mechanically stripped, thus giving a roughened surface already.
Discussion of Results

- Mechanically roughened surface give better results but must be solvent cleaned to be effective.

- Thickness of adhesive can not be controlled without the aid of tooling.
FEM Model

- MARC FEM model non linear analysis approach
- Elastomer curve based upon Ogden material type
 - The Ogden material model, describes the detailed mechanical behaviors of viscoplastic materials, in MARC brick elements.
 - Viscoplastic materials models provide reliable analysis results even after yielding
 - The Ogden material is more accurate in this range of deformation analysis.
FEM Model (cont.)

- Shear stress at bonded area obtained
- Non linear behaviour at different load levels
 behaviour characterisation
FEM Model cont´d

Typical generic stress-strain curve for adhesives
FEM Model cont’d
FEM Model cont´d

Shear

Path

step 1
step 2
step 3
step 4
step 5
step 6
step 7
FEM Model cont´d

Path (z-coordinate)

Shear

step 1
step 2
step 3
step 4
step 5
step 6
step 7

0 0.2 0.4 0.6 0.8
Conclusions

- Workshop environmental conditions must be controlled
- Surface preparation procedures must be clearly established and easily controlled
- Repair analysis must take into account the knock down effects of surface preparation effects