“Safe” Composite Repairs ~ Substantiation Database Framework

Presented at:
FAA Workshop for Composite Damage Tolerance and Maintenance
Chicago, IL July 19-22, 2006

Mike Borgman
Spirit Aerosystems
316-523-0757
michael.d.borgman@spiritaero.com
Presentation Objective

- Discussion Of Considerations Which Drive The Definition of “Sufficient” Data To Evidence A “Safe” Repair

- I’m Not Really Offering Anything That Isn’t Already Known

- Only Summarizing Key Points To Prompt Discussion
How Do We Meet “Safe”

• With Respect To Structural Repair, Safety Can Be Met A Number Of Ways
 – Repair Failure = No Effect On Flight Safety
 • Example: Superficial Repair On Non-Structural Component
 – Repair Failure = “Safe” Impact On Flight Safety
 • Repair Or Replacement Of Component Necessary But No Impact On Continued Safe Flight
 – Repair Failure = Unacceptable
• Each Of These Defines A Unique Set Of Substantiation Data Requirements
What Are The Broad Questions?

• Is Repair Itself Strong Enough?
• Is Attachment To Airframe Strong Enough?
• Was The Repair Performed Per The Expectations Of The Supporting Design/Analysis?
 – Fabrication Process Well Documented?
 – Critical Aspects Of Fabrication Process Understood and Addressed With Mitigation Plans?
 – Process Compatible With On-Site Equipment and Training?
 – Repair Work Environment Conducive To Success?
 – Quality Of End Product Adequately Assessed?
What Data Is Required For Answers?

• No Single Definition Exists
• Comprehensiveness Of Required Database Is “Repair Scenario” Dependent
 – Database Requirements Range From “Minimal” To “Comprehensive”
 • Minimal For Aesthetic Repair On “Non-Structural” Component
 • Generally, Less Comprehensive For Repairs On Secondary Structure Than For Repairs On Primary Structure
 • Database Coverage “Very” Comprehensive For “Permanent Structural” Repairs
Substantiation Data ~ Considerations

• Questions Defining Database Composition To Support A Given Repair Substantiation Scenario
 – What Are Consequences of Repair Failure?
 – Is Repair On Primary Structure or Secondary Structure?
 – Is Repair In Critical or Non-Critical Area?
 – Is Repair Permanent or Temporary?
 – Does Database Substantiate A “One Off” Repair? Or General Repair Method For Broad Application?
 – Is Repair Bonded Or Bolted?
 – Is Repair Material Same As Airframe Material?
 – Is Repair Process Established or Novel?
 – What Level Of Inspections Can Be Performed?
 – Are Analysis Methods Mature?
Substantiation Data ~ Considerations

• Other Considerations Driving Data Req.’s
 – Environment In Which Repair Will Be Performed
 – Equipment Available On-Site To Perform Repair
 – Training and Education Of Repair Technicians
 – Does Sufficient Understanding of Repair Process Variability and Robustness Exist?
 – What Are Necessary “In Process” Inspection Requirements?
 – What Are Necessary Post Cure Inspection Requirements?
Notional Example Scenario #1

• Repair Description

Note: Example of scenario requiring VERY comprehensive database req’s.

– Generally Applied Repair Method
– Flush Bonded Repair (“Scarf”)
– Stringer Stiffened Solid Laminate Structure
– Permanent
– Primary Structure Applications
– Structurally Critical Areas
– Repair Material Not Same As Airframe Material
– Individual Applications To Be Substantiated By Analysis

Notional Example Scenario #1

- **Permanent Flush Bonded Repair To Primary Structure In Structurally Critical Area**
 - Potential Requirements of Substantiation Database
 - Mechanical Properties For Repair Material and Adhesive
 - Requires Demonstration Of Material Compatibilities and Equivalency
 - Satisfactory Ultimate Static Strength Capability
 - All Relevant Combined Loading Modes and Environments
 - Satisfactory Resilience To Sustained Load
 - Satisfactory Durability and Residual Strength
 - Sufficient Damage Tolerance Relative To Airframe Design Req’s
 - Repair Damages Propagate In “Controlled” Fashion
 - Airframe Architecture “Contains” Repair Damage Growth
 - Proven Analysis Method OR Rationale Supporting Position That Existence Of Repair Does Not Reduce Original Margin of Safety
Notional Example Scenario #1

- **Notional** Build-Up Of Test Date For “General Use” Repair Method (Not “One-Off”)

Notional Example Scenario #1

Width At Each Level = Test Article Count

- **Barrel Level Test**
 - Combined Load
 - Tension ~ Flat
 - Compression ~ Curved

- **Element Level Tests**
 - Tens.
 - Comp.
 - Flex.

- **Sub-Element Level Tests (Combined Joints)**
 - Patch Materials: E’s, G’s, N’s (Analysis Inputs), and Mechanical Strengths
 - Adhesives: E, G, Stress vs. Strain (Analysis Input), Mechanical Strengths
 - Joints: Scarf Lap Joints, Lap Joints

Note:
- Coupon Quantity Dictated By:
 1) Number of Skin Gages?
 2) Number of Stiffener Types
 3) Number of Stiffener Gages
 4) Number of Skin/Stiffnr Combos

Final Substantiation

- Evaluate Damage Containment
- Evaluate Damage Tolerance and Propagation
- Assess Failure Criteria & Proc. Variability
- Develop Failure Criteria
Notional Example Scenario #2

• Repair Description
 – “One Off” Application
 • One Time Unique Repair
 – Flush Bonded Repair ("Scarf")
 – Sandwich Structure
 – Permanent
 – Secondary Structure Application
 – Structurally Critical Areas
 – Repair Material Same As Airframe Material
 – Unique Application Substantiated By Analysis And Supported By “Point Test” Data
 – Unique Fabrication Process ("Kit” Repair)
Notional Example Scenario #2

• Substantiation Data Requirements
 – “One Off” Application
 • Data Required Is Limited To The Specific Configuration (Laminate Gage, Core, etc…)
 – Repair Material = Airframe Material
 • Mechanical Properties of Patch and Adhesives Materials Must Be Available Or Must Be Developed, But Fundamental Compatibilities Not An Issue
 – Note: Final Mechanical Properties Reduced From Test Data Must Be Consistent With Airframe Design Requirements
Notional Example Scenario #2

• Substantiation Data Requirements
 – Application Substantiated By Analysis And Supported By “Point Test” Data
 • Need “Joint Performance” Data
 • Demonstrate Life Capability
 • Demonstrate or Characterize Damage Tolerance
 • Document Analytical/Qualitative Assessment Of Ramifications Of Failure and Fail Safe Philosophy
Notional Example Scenario #2

- **Substantiation Data Requirements**
 - **Unique Fabrication Process ("Kit" Repair)**
 - Document Process “Fit With” On-Site Repair Environment and Equipment
 - Document Proof of Concept Tests For Fabrication Process Variability and Robustness
 - Document “In Process” Inspection Requirements
 - Document Post-Cure Inspection Technique and Inspection Standards
 - Document Structural Test Data For Correlation With Analysis Demonstrating Capability (Configurations, Load Modes, Env.’s)
Repair Substantiation

• Hand Off To JW For Specific Case Histories